THE UNIVERSITY of EDINBURGH

Degree Regulations & Programmes of Study 2010/2011
- ARCHIVE as at 1 September 2010 for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Electronics

Undergraduate Course: Digital System Design 4 (ELEE10007)

Course Outline
School School of Engineering College College of Science and Engineering
Course type Standard Availability Available to all students
Credit level (Normal year taken) SCQF Level 10 (Year 4 Undergraduate) Credits 10
Home subject area Electronics Other subject area None
Course website None
Course description This course is lecture based and is taken by all students taking the forth year of electronics and/or electrical engineering degree in Semester 2. It comprises one 20 lecture module. The course aims to present the principles of design re-use in the context of System-on-Chip (SoC) technology. The design and selection of soft, firm, and hard IP blocks are considered. Emerging design practices and standards are reviewed. Two target technologies are addressed: deep-submicron ASICs and field programmable gate arrays (FPGAs).
Entry Requirements
Pre-requisites It is RECOMMENDED that students have passed Electronics 2 (ELEE08010) OR Digital Electronics 3 (ELEE09009) OR Electrical and Mechanical Engineering 3 (ELEE09014)
Co-requisites
Prohibited Combinations Other requirements None
Additional Costs None
Information for Visiting Students
Pre-requisites None
Prospectus website http://www.ed.ac.uk/studying/visiting-exchange/courses
Course Delivery Information
Delivery period: 2010/11 Semester 2, Available to all students (SV1) WebCT enabled:  Yes Quota:  None
Location Activity Description Weeks Monday Tuesday Wednesday Thursday Friday
King's BuildingsLecture1-11 09:00 - 09:50
King's BuildingsLecture1-11 10:00 - 10:50
King's BuildingsLecture1-11 10:00 - 10:50
First Class Week 1, Monday, 09:00 - 09:50, Zone: King's Buildings. Room 5327, James Clerk Maxwell Building
Summary of Intended Learning Outcomes
At the conclusion of the exercise the students should be able to
1. Understand architectural design and synthesis principles;
2. Understand the concept of Hardware Description Languages (HDLs);
3. Understand the transformation of an algorithm from specification to an RTL (described with a Hardware Description Language such as Verilog-HDL);
4. Understand the technological conditions behind the need for greater design re-use for IC systems;
5. Differentiate between the different types of intellectual property (IP) blocks, their advantages and disadvantages;
6. Evaluate the appropriateness of a particular IP block for a given application;
7. Assess a piece of soft IP using the QIP metric;
8. Assess a piece of soft IP using industrial tools such as DesignChecker;
9. Understand the generation of a Hard IP;
10. Apply the design guidelines for IP block authoring;
11. Understand the effects of DSM technology on the CAD flow for ASIC design;
12. Be familiar with the DSM ASIC design methodology;
13. Be familiar with general HDL coding guidelines for reuse;
14. Be familiar with low power design techniques;
15. Understand high level synthesis techniques for high performance implementations;
16. Understand advanced computer architectures;
17. Understand datapath architectures used for high performance implementations.
Assessment Information
Assessment will be based on a single written paper of 90 minutes duration.
Please see Visiting Student Prospectus website for Visiting Student Assessment information
Special Arrangements
Not entered
Contacts
Course organiser Dr Tughrul Arslan
Tel: (0131 6)50 5592
Email: T.Arslan@ed.ac.uk
Course secretary Mrs Laura Smith
Tel: (0131 6)50 5690
Email: laura.smith@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Timetab
Prospectuses
Important Information
 
copyright 2010 The University of Edinburgh - 1 September 2010 5:58 am