THE UNIVERSITY of EDINBURGH

Degree Regulations & Programmes of Study 2010/2011
- ARCHIVE as at 1 September 2010 for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Undergraduate Course: Computational Complexity (INFR10008)

Course Outline
School School of Informatics College College of Science and Engineering
Course type Standard Availability Available to all students
Credit level (Normal year taken) SCQF Level 10 (Year 4 Undergraduate) Credits 10
Home subject area Informatics Other subject area None
Course website http://www.inf.ed.ac.uk/teaching/courses/cmc
Course description The module extends a line of study, begun in CS3 Computability and Intractability, in which computational problems are classified according to their intrinsic difficulty or ``complexity.'' We formalise the notion of complexity of a problem as the amount of time (or space) required to solve the problem on a simple universal computing device, namely the Turing machine. We study some fundamental features of computation in this model, such as time and space hierarchies, the relationship between time and space, and between determinism and non-determinism. We introduce a number of natural complexity classes, which are essentially independent of the Turing machine model, and characterise these classes by identifying some of their complete (i.e., hardest) problems. We then introduce a computational model based on Boolean circuits that allows us to classify problems according to their parallel complexities; as with sequential computation, we are able to separate those problems that can be solved efficiently on a parallel computer from those that (apparently) cannot. Next, we examine the role of randomisation (allowing occasional incorrect answers) in making apparently intractable problems easier. We meet a surprising characterisation of the class NP in terms of ``probabilistically checkable proofs,'' and make an equally surprising connection between this new view of NP and non-approximability of combinatorial optimisation problems. Finally, we investigate some really hard problems that are provably intractable.
Entry Requirements
Pre-requisites Co-requisites
Prohibited Combinations Other requirements Successful completion of Year 3 of an Informatics Single or Combined Honours Degree, or equivalent by permission of the School. Participants should have some facility with mathematical modes of reasoning.
Additional Costs None
Information for Visiting Students
Pre-requisites None
Prospectus website http://www.ed.ac.uk/studying/visiting-exchange/courses
Course Delivery Information
Delivery period: 2010/11 Semester 2, Available to all students (SV1) WebCT enabled:  No Quota:  None
Location Activity Description Weeks Monday Tuesday Wednesday Thursday Friday
CentralLecture1-11 15:00 - 15:50
CentralLecture1-11 15:00 - 15:50
First Class Week 1, Monday, 15:00 - 15:50, Zone: Central. Room 1.2, 22 Buccleuch Place
Summary of Intended Learning Outcomes
1 - Students will be able to formulate models of sequential, randomised and parallel compution, and be able to describe the relationships between these models.
2 - They will be able to quantify the resources employed by these models, such as time, space and circuit size/depth.
3 - Students will be able to analyse computational problems from a complexity perspective, and so locate them within the complexity landscape (a landscape which is much refined from that described in Computability and Intractability).
4 - In particular, they will further develop their skill in conducting a completeness proof, which is in a sense a practical skill.
5 - Students will be able to apply mathematical skills and knowledge from earlier years (e.g., from probability theory and logic) to concrete problems in computational complexity.
6 - Students will study the topic in sufficient depth as to gain an appreciation of some of the challenging issues in computer science today (e.g., P =? NP).
Assessment Information
Written Examination 75
Assessed Assignments 25
Oral Presentations 0

Assessment
Three collections of pencil-and-paper exercises issued at approximately three-week intervals.

If delivered in semester 1, this course will have an option for semester 1 only visiting undergraduate students, providing assessment prior to the end of the calendar year.
Please see Visiting Student Prospectus website for Visiting Student Assessment information
Special Arrangements
Not entered
Contacts
Course organiser Dr Amos Storkey
Tel: (0131 6)51 1208
Email: A.Storkey@ed.ac.uk
Course secretary Miss Kate Weston
Tel: (0131 6)50 2701
Email: Kate.Weston@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Timetab
Prospectuses
Important Information
 
copyright 2010 The University of Edinburgh - 1 September 2010 6:10 am