Undergraduate Course: Finite Element Methods for Solids and Structures 4 (CIVE10022)
Course Outline
School | School of Engineering |
College | College of Science and Engineering |
Course type | Standard |
Availability | Available to all students |
Credit level (Normal year taken) | SCQF Level 10 (Year 4 Undergraduate) |
Credits | 10 |
Home subject area | Civil |
Other subject area | None |
Course website |
None |
Taught in Gaelic? | No |
Course description | The finite element method (FEM) (also called finite element analysis or FEA) originated from the need to solve complex problems in solid mechanics. FEM is used to obtain approximate numerical solutions to a variety of equations of calculus. Today it is used in a wide range of disciplines. This course is an introduction to FEA as applied to elasticity problems in solid and structural mechanics. The mathematical equations are developed using the virtual work basis of FEM and this is used to develop equations for one, two and three dimensional elements. As FEA is a computational tool this course includes practical exercises using the commercial package ABAQUS. A number of tutorials involving hand calculations are provided to aid understanding of the technique. |
Information for Visiting Students
Pre-requisites | Structural Analysis/Mechanics |
Displayed in Visiting Students Prospectus? | No |
Course Delivery Information
|
Delivery period: 2011/12 Block 1 (Sem 1), Available to all students (SV1)
|
WebCT enabled: Yes |
Quota: None |
Location |
Activity |
Description |
Weeks |
Monday |
Tuesday |
Wednesday |
Thursday |
Friday |
King's Buildings | Laboratory | | 1-6 | 14:00 - 15:50 | | | | | King's Buildings | Lecture | Daniel Rutherford LT1 | 1-6 | 16:10 - 18:00 | | | | | King's Buildings | Lecture | Hudson Beare LT2 | 1-6 | | | | 09:00 - 10:50 | | King's Buildings | Tutorial | Classroom 10, Alrick Building | 1-6 | | | | | 09:00 - 09:50 |
First Class |
Week 1, Monday, 14:00 - 15:50, Zone: King's Buildings. Laboratory |
Exam Information |
Exam Diet |
Paper Name |
Hours:Minutes |
|
|
Main Exam Diet S1 (December) | | 1:30 | | |
Summary of Intended Learning Outcomes
By the end of the course, the student should be able to:
&· describe the analytical methods and procedures which the finite element programs use to analyse elastic solid structures;
&· be able to use the computer based finite element methods to solve simple problems by hand calculations
&· identify and understand all the various matrix operations involved in the process;
&· use computer programs to analyse elastic structures, present results in appropriate graphical formats, carry out checks to assess the correctness of the output, and interpret results properly.
|
Assessment Information
Coursework: 40%
Exam: 60%
|
Special Arrangements
none |
Additional Information
Academic description |
Not entered |
Syllabus |
L1 Introduction
Course outline; areas of application of the finite element (FE) method; examples of some problems for which FE analysis has been used.
L2 FE terminology and steps
Introduction to FE terminology; steps of the analysis using an assumed displacement field approach for linear elastic analysis of structures.
L3 Input to and Output from a FE program 1
Feeding a finite element program (ABAQUS) with geometric, physical and loading information.
L4 Input to and Output from a FE program 2
Understanding and interpreting results from a FE program.
L5 FE Modelling
Introduction to plane stress, plane strain, axisymmetric, and plate bending problems; degrees of freedom; stress-strain and strain-displacement relations.
L6 Virtual Work Basis of Finite Element Method: 1
Definition of generic displacements, body forces, nodal displacements, and nodal actions; displacement shape functions with simple examples; relating generic displacements, strains, and stresses to nodal displacements.
L7 Virtual Work Basis of Finite Element Method: 2
Derivation of FE equilibrium equations using the virtual work principle; examples of derivation of stiffness and equivalent load vector for a two node truss element.
L8 Quadrilateral Elements 1
Normalised coordinates; shape functions for the bi-linear and quadratic elements; Isoparametric concept; examples
L9 Quadrilateral Elements 2
Evaluation of element matrices; the Jacobian matrix; examples of specific cases.
L10 Quadrilateral Elements 3
Numerical integration; examples of numerical evaluation of element matrices
L11 Quadrilateral Elements 4
Examples of numerical and closed form evaluation of stiffness and load matrix terms
L12 Triangular elements 1
Natural coordinates; shape functions of constant and linear strain triangular elements; isoparametric mapping; examples
L13 Triangular elements 2
Evaluation of element matrices; the Jacobian matrix; examples of specific cases.
L14 Triangular elements 3
Numerical integration; examples of numerical evaluation of element matrices
L15 Beam elements 1
FE basis of Euler Bernoulli beam elements; FE matrices and shape functions
L16 Beam elements 2
Strain-displacement and stress-strain relations for Euler Bernoulli beams; evaluation FE matrices; limitations; examples
L17 Beam elements 3
FE basis of thick (Timoshenko) beam elements; shape functions
L18 Beam elements 4
Generalised strain-displacement and generalised stress-strain relations; evaluation of FE matrices; reduced integration
L19 Revision
|
Transferable skills |
Not entered |
Reading list |
Recommended texts:
1. Cook, RD; Malkus, DS; Plesha, ME; Witt, RJ. Concepts and Applications of Finite Element Analysis, Wiley, 2002.
2. Zienkiewicz, OC; Taylor, RL. The Finite Element Method for Solid and Structural Mechanics, Butterworth-Heinemann, 2005.
3. Bathe, KJ. Finite Element Procedures, Prentice Hall, 1996.
4. Smith, IM; Griffiths, DV. Programming the Finite Element Method, Wiley, 2004.
|
Study Abroad |
Not entered |
Study Pattern |
Lectures: 19 hrs; Tutorials: 6 hrs; Computer labs: 10 hrs |
Keywords | Numerical Methods, solid mechanics, elasticity |
Contacts
Course organiser | Dr Pankaj
Tel: (0131 6)50 5800
Email: Pankaj@ed.ac.uk |
Course secretary | Mrs Laura Smith
Tel: (0131 6)50 5690
Email: laura.smith@ed.ac.uk |
|
© Copyright 2011 The University of Edinburgh - 16 January 2012 5:47 am
|