THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2011/2012
- ARCHIVE for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Postgraduate Course: Natural Language Understanding (Level 11) (INFR11061)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Course typeStandard AvailabilityAvailable to all students
Credit level (Normal year taken)SCQF Level 11 (Postgraduate) Credits10
Home subject areaInformatics Other subject areaNone
Course website http://www.inf.ed.ac.uk/teaching/courses/nlu Taught in Gaelic?No
Course descriptionThis course explores current research into interpreting natural language. Motivations for this study range from foundational attempts to understand how people interpret communication to entirely practical efforts to engineer systems for performing a variety of language tasks, such as information extraction, question answering, natural language front ends to databases, human-robot interaction and customer relationship management, to name a few.

This course represents an introduction to the theory and practice of computational approaches to natural language understanding. The course will cover common parsing methods for sentences, discourse and dialogue, and it will also address lexical processing tasks such as word sense disambiguation and clustering. We will study state of the art symbolic techniques in deep and shallow language processing, as well as statistical models, acquired by both unsupervised and supervised machine learning from online linguistic resources. Students will have the opportunity to explore what they have learned in written and practical assignments. These assignments will be designed to enable students to gain an understanding for the pervasiveness of language ambiguity at all levels and the problems this poses for automated language understanding, and for the relative strengths and weaknesses of the various theories and engineering approaches to these problems.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Advanced Natural Language Processing (INFR11059) AND Introductory Applied Machine Learning (INFR09029)
Co-requisites
Prohibited Combinations Students MUST NOT also be taking Natural Language Understanding (Level 10) (INFR10035)
Other requirements For Informatics PG and final year MInf students only, or by special permission of the School.
Additional Costs None
Information for Visiting Students
Pre-requisitesNone
Displayed in Visiting Students Prospectus?No
Course Delivery Information
Delivery period: 2011/12 Semester 2, Available to all students (SV1) WebCT enabled:  No Quota:  None
Location Activity Description Weeks Monday Tuesday Wednesday Thursday Friday
CentralLecture1-11 09:00 - 09:50
CentralLecture1-11 09:00 - 09:50
First Class Week 1, Tuesday, 09:00 - 09:50, Zone: Central. 7BSQ LT4
No Exam Information
Summary of Intended Learning Outcomes
1 - Given a parsing problem students should be able to use state-of-the-art symbolic parsing techniques, including lexicalised parsing to solve the problem and provide a written explanation of the parsing techniques used in the course.
2 - Given a labelled corpus, students should be able to select and use state-of-the-art statistical parsing techniques (generative and discriminative) by training parsers on the labelled corpus using existing software packages.
3 - Given an NLU system, students should be able to choose appropriate evaluation metrics for the system, and use error analysis to propose improvements to the language processing models.
4 - Given an example of a problem in coreference resolution, discourse segmentation, and discourse parsing, students should be able to provide a written description of how current symbolic and statistical techniques help solve the problem.
5 - Given a description of an NLU system, the student should be able to relate it to features of human models of language interpretation at various levels of processing (words, sentences, discourse and dialogue).
6 - Given a model and a labelled corpus, students should be able to employ existing ML software packages to train the model on the corpus in order to perform a lexical semantic task.
7 - Given an open-ended problem of choosing informative features for a particular NLP task and a description of the available training resources, the student should be able to give a well-justified, written and/or practical, selection of such informative features.
Assessment Information
Written Examination 70
Assessed Assignments 30
Oral Presentations 0

Assessment
Practical exercises, addressing semantic tasks such as word sense disambiguation and discriminative parsing. Written part to include open-ended question.

If delivered in semester 1, this course will have an option for semester 1 only visiting undergraduate students, providing assessment prior to the end of the calendar year.
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus Parsing
* Advanced parsing models; e.g., headed PCFGs
* Grammar Induction
* Discriminative Parsing
* Shallow parsing
* Human models of sentential parsing (e.g., incrementality)

Semantic Processing
* Semantic Construction in wide-coverage online grammars
* Word sense disambiguation
* clustering, similarity distributions
* lexical subcat acquisition and semantic role labelling
* Human models of lexical processing (e.g., semantic priming)

Discourse
* Anaphora resolution
* Discourse segmentation
* Dialogue act recognition
* Discourse parsing (including learning discourse structure)
* Human models of discourse and dialogue (e.g., the alignment model)
* Advanced topics

Relevant QAA Computing Curriculum Sections: Artificial Intelligence, Human-Computer Interaction (HCI), Natural Language Computing
Transferable skills Not entered
Reading list * Jurafsky and Martin (2007) Speech and Language Processing, Prentice Hall (2nd Edition)
* Bird, Klein and Loper (2007) Natural Language Processing in Python
* Various research papers
Study Abroad Not entered
Study Pattern Lectures 20
Tutorials 0
Timetabled Laboratories 0
Non-timetabled assessed assignments 40
Private Study/Other 40
Total 100
KeywordsNot entered
Contacts
Course organiserDr Michael Rovatsos
Tel: (0131 6)51 3263
Email: mrovatso@inf.ed.ac.uk
Course secretaryMiss Gillian Bell
Tel: (0131 6)50 2692
Email: Gillian.Watt@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Timetab
Prospectuses
Important Information
 
© Copyright 2011 The University of Edinburgh - 16 January 2012 6:17 am