THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2011/2012
- ARCHIVE for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Postgraduate Course: Machine Translation (Level 11) (INFR11062)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Course typeStandard AvailabilityNot available to visiting students
Credit level (Normal year taken)SCQF Level 11 (Postgraduate) Credits10
Home subject areaInformatics Other subject areaNone
Course website http://www.inf.ed.ac.uk/teaching/courses/mt Taught in Gaelic?No
Course descriptionMachine Translation deals with computers translating human languages (for example, from Arabic to English). The field is now sufficiently mature that Google use it to allow millions of people to translate Web Documents each day. This course deals with all aspects of designing, building and evaluating a range of state-of-the-art translation systems. The systems covered are largely statistical and include: word-based, phrase-based, syntax-based and discriminative models. As well as exploring these systems, the course will cover practical aspects such as using very large training sets, evaluation and the open problem of whether linguistics can be useful for translation.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites It is RECOMMENDED that students have passed Advanced Natural Language Processing (INFR11059)
Co-requisites
Prohibited Combinations Students MUST NOT also be taking Machine Translation (Level 10) (INFR10033)
Other requirements Advanced Natural Language Processing or equivalent.

For Informatics PG and final year MInf students only, or by special permission of the School.
Additional Costs None
Course Delivery Information
Delivery period: 2011/12 Semester 2, Not available to visiting students (SS1) WebCT enabled:  No Quota:  None
Location Activity Description Weeks Monday Tuesday Wednesday Thursday Friday
CentralLecture1-11 17:10 - 18:00
CentralLecture1-11 17:10 - 18:00
First Class Week 1, Monday, 17:10 - 18:00, Zone: Central. AT 2.12
Exam Information
Exam Diet Paper Name Hours:Minutes
Main Exam Diet S2 (April/May)2:00
Summary of Intended Learning Outcomes
1 - Provide a written description of the main algorithms used in the system.
2 - Design and justify an approach to the evaluation of the system using state of the art tools and metrics
3 - Analyse the data collected by such an evaluation.
4 - Where the system is designed to deal with large volumes of data the student should also be able to describe how the system handles large data volumes and critically compare the system=s solution with other common solutions to the problem.
5 - Identify where linguistics knowledge is relevant in the design of the system and what influence of linguistic knowledge has on the translation quality and performance of the system.
6 - Given typical MT translation problem students should be able to propose a range of different solutions to the problems and provide justified comparisons between their solutions.
7 - Students should also be able to identify the relationship between the given problem and others covered in the course.
Assessment Information
Written Examination 70
Assessed Assignments 30
Oral Presentations 0

Assessment
A single piece of coursework dealing with some practical aspect of translation. This will involve analysis of particular problems (for example, reordering or word selection), as well as actual problem solving. Typically, the problems set will be close to research-level.
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus History of MT
* rule-based systems, ALPAC report, IBM models, phrase-based systems

Models
* word-based
* phrase-based
* syntax-based
* discriminative
* Factored Models

Reordering
* Lexicalised reordering
* Distortion
* Changing the source

Language Modelling
* Ngram models
* Scaling LMs (cluster-based LMs, Bloom Filter LMs)

Decoding
* Knight on complexity, problem statement
* Stack decoding

Evaluation
* Human evaluation
* Automatic methods
* NIST competitions

Adding linguistics
* Reranking
* As factors

Parallel corpora etc (data)
*What they are, where they come from
* Comparable corpora
* Multi-parallel corpora

Relevant QAA Computing Curriculum Sections: Artificial Intelligence, Human-Computer Interaction (HCI), Natural Language Computing
Transferable skills Not entered
Reading list * Philipp Koehn: Statistical Machine Translation (forthcoming)
* Primary literature
Study Abroad Not entered
Study Pattern Lectures 20
Tutorials 0
Timetabled Laboratories 0
Non-timetabled assessed assignments 40
Private Study/Other 40
Total 100
KeywordsNot entered
Contacts
Course organiserDr Michael Rovatsos
Tel: (0131 6)51 3263
Email: mrovatso@inf.ed.ac.uk
Course secretaryMiss Kate Weston
Tel: (0131 6)50 2701
Email: Kate.Weston@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Timetab
Prospectuses
Important Information
 
© Copyright 2011 The University of Edinburgh - 16 January 2012 6:17 am