THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2011/2012
- ARCHIVE for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Mathematics : Mathematics

Undergraduate Course: Differential Equations (VS1) (MATH09014)

Course Outline
SchoolSchool of Mathematics CollegeCollege of Science and Engineering
Course typeStandard AvailabilityPart-year visiting students only
Credit level (Normal year taken)SCQF Level 9 (Year 3 Undergraduate) Credits10
Home subject areaMathematics Other subject areaSpecialist Mathematics & Statistics (Honours)
Course website https://info.maths.ed.ac.uk/teaching.html Taught in Gaelic?No
Course descriptionSyllabus summary: Fourier transform, Power series and differential equations, systems of ODEs, separation of variables, orthogonal expansions and applications.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Additional Costs None
Information for Visiting Students
Pre-requisitesNone
Displayed in Visiting Students Prospectus?Yes
Course Delivery Information
Delivery period: 2011/12 Semester 1, Part-year visiting students only (VV1) WebCT enabled:  Yes Quota:  None
Location Activity Description Weeks Monday Tuesday Wednesday Thursday Friday
King's BuildingsLecture1-11 12:10 - 13:00
King's BuildingsLecture1-11 12:10 - 13:00
First Class Week 1, Monday, 12:10 - 13:00, Zone: King's Buildings. Lecture
Exam Information
Exam Diet Paper Name Hours:Minutes
Main Exam Diet S1 (December)Differential Equations (VS1)2:00
Summary of Intended Learning Outcomes
1. Solution of a linear system (in non-degenerate cases) using eigenpairs
2. Evaluation and application of matrix exponential (in non-degenerate cases)
3. Classification of planar linear systems (non-degenerate cases)
4. Determination of stability and classification of an equilibrium of a planar nonlinear system, by linearisation
5. Graphic use of integral of a conservative planar system
6. Acquaintance with Poincare-Bendixson Theorem
7. Acquaintance with basic partial differential equations and types of boundary conditions
8. Solution of first-order linear pde with constant coefficients
9. Solution of the wave equation by change of variable, leading to d'Alembert's solution
10. Acquaintance with notions of existence and uniqueness by example
11. Separation of variables for wave equation (finite string) and Laplace's equation (disc)
12. Handling Fourier series as orthogonal expansions, with an inner product and projection operator
13. Self-adjoint linear differential operators and their elementary spectral properties
14. The notion of completeness
15. Power series solution about a regular points of an analytic ordinary differential equation
16. Power series solution of Bessel's equation of order 0
17. Solutions of the wave equation for a circular drum
Assessment Information
Examination (100%)
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus Not entered
Transferable skills Not entered
Reading list http://www.readinglists.co.uk
Study Abroad Not entered
Study Pattern Not entered
KeywordsDEqv1
Contacts
Course organiserDr Maximilian Ruffert
Tel: (0131 6)50 5039
Email: M.Ruffert@ed.ac.uk
Course secretaryMrs Kathryn Mcphail
Tel: (0131 6)50 4885
Email: k.mcphail@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Timetab
Prospectuses
Important Information
 
© Copyright 2011 The University of Edinburgh - 16 January 2012 6:24 am