THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2011/2012
- ARCHIVE for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Mechanical

Undergraduate Course: Solid Mechanics 4 (MECE10006)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Course typeStandard AvailabilityAvailable to all students
Credit level (Normal year taken)SCQF Level 10 (Year 4 Undergraduate) Credits10
Home subject areaMechanical Other subject areaNone
Course website http://www.see.ed.ac.uk/teaching/mech/ Taught in Gaelic?No
Course descriptionThe course provides an understanding of the nature and scope of advanced solid mechanics, and an appreciation of the limits of analytical solutions and the value of these in underpinning modern computer methods for stress analysis. This is achieved by applying the basic field equations of solid mechanics to a range of core problems of engineering interest.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Additional Costs None
Information for Visiting Students
Pre-requisitesNone
Displayed in Visiting Students Prospectus?Yes
Course Delivery Information
Not being delivered
Summary of Intended Learning Outcomes
On completion of the course, students should be able to:

1. Understand the tensorial nature of stress at a point in a loaded component. and relate the problem of finding the three principal stresses at a point to the matrix eigenvalue problem.

2. Be able to apply concepts of principal stress, max shear stress, stress invariants and octahedral shear stress to the problem of failure criteria for design under combined stress; be familiar with the TRESCA and VON MISES criteria for design.

3. Understand the general strain-displacement relations for small strain, and the stress field equations, and be able to relate a displacement field to a stress field through the three dimensional elastic relations in Cartesian and cylindrical coordinates.

4. Apply the field equations to determine the stress solution for axisymmetric problems such as thick cylinders under internal pressure loading, and spinning discs.

5. Understand the analysis of torsional shear stress in non-circular cross sections, and be able to use the membrane analogy of Prandtl to obtain the approximate solution of the stresses in thin walled open sections and thin walled tubes under torsion, including evaluating the torsional stiffness.

6. Be familiar with stress resultants per unit length in the theory of thin plates, and understand the plate differential equation; be able to evaluate the deflection curve and stress distributions in thin uniform circular plates under a range of boundary conditions and axisymmetric loads.

7. Appreciate the limits of analytical solutions to stress fields and understand the basis, value and power, and approximate nature of computer based Finite Element Method.
Assessment Information
Final Examination 100%
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus Not entered
Transferable skills Not entered
Reading list Not entered
Study Abroad Not entered
Study Pattern Not entered
KeywordsNot entered
Contacts
Course organiserDr Ian Roberts
Tel: (0131 6)50 5689
Email: J.W.Roberts@ed.ac.uk
Course secretaryMrs Kim Orsi
Tel: (0131 6)50 5687
Email: Kim.Orsi@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Timetab
Prospectuses
Important Information
 
© Copyright 2011 The University of Edinburgh - 16 January 2012 6:26 am