THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2011/2012
- ARCHIVE for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Mechanical

Undergraduate Course: Computational Fluid Dynamics 5 (MECE11004)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Course typeStandard AvailabilityAvailable to all students
Credit level (Normal year taken)SCQF Level 11 (Year 5 Undergraduate) Credits20
Home subject areaMechanical Other subject areaNone
Course website http://www.see.ed.ac.uk/teaching/mech/ Taught in Gaelic?No
Course descriptionThis module introduces CFD by means of a set of lectures covering the background physics and mathematics, together with practical assignments that use commercial CFD software to solve flow problems. The need for error control and independent validation of results is stressed throughout. Although particular software (Star-CCM+) is used for the assignments, the underlying themes of the module are generic.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Additional Costs None
Information for Visiting Students
Pre-requisitesNone
Displayed in Visiting Students Prospectus?Yes
Course Delivery Information
Delivery period: 2011/12 Semester 1, Available to all students (SV1) WebCT enabled:  Yes Quota:  None
Location Activity Description Weeks Monday Tuesday Wednesday Thursday Friday
King's BuildingsLectureAshworth Labs LT31-11 10:00 - 13:00
First Class Week 1, Wednesday, 10:00 - 13:00, Zone: King's Buildings. Ashworth Labs LT3
Exam Information
Exam Diet Paper Name Hours:Minutes
Main Exam Diet S1 (December)Computational Fluid Dynamics 52:00
Resit Exam Diet (August)2:00
Summary of Intended Learning Outcomes
On completion of the module, students should be able to:

1. Describe how the fields of fluid mechanics, mathematics and computer science have contributed to the development of CFD.

2. Identify the key aspects of fluid mechanics relevant to the setting up of a problem for CFD, and to the interpretation of the results.

3. Describe how various levels of approximation to the equations of motion are appropriate to particular classes of flow problem.

4. Describe the nature of turbulent flows and explain why 'turbulence models' are necessary to many CFD solutions.

5. Distinguish between the important classes of turbulence model.

6. Describe the important classes of numerical discretisation scheme, and explain the relationship between the discretisation process and the underlying fluid physics.

7. Appreciate the significance of error control and validation in CFD.

8. Discuss the sources of error in CFD solutions, and describe steps which can be taken to estimate the magnitude of errors.

9. Set up a two-dimensional flow problem for CFD solution, including geometry, boundary conditions, flow models and solution parameters.

10. Use pre-processor, solver and post-processor software to build a CFD model for two-dimensional problem, and obtain a solution.

11. Estimate the magnitudes of solution errors, and take steps to validate the results.
Assessment Information
Assignment 50%
Final Examination 50%
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus Not entered
Transferable skills Not entered
Reading list Not entered
Study Abroad Not entered
Study Pattern Not entered
KeywordsNot entered
Contacts
Course organiserDr David Ingram
Tel: (0131 6)51 9022
Email: David.Ingram@ed.ac.uk
Course secretaryMrs Laura Smith
Tel: (0131 6)50 5690
Email: laura.smith@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Timetab
Prospectuses
Important Information
 
© Copyright 2011 The University of Edinburgh - 16 January 2012 6:27 am