Undergraduate Course: Particle Physics (PHYS11042)
Course Outline
School  School of Physics and Astronomy 
College  College of Science and Engineering 
Course type  Standard 
Availability  Available to all students 
Credit level (Normal year taken)  SCQF Level 11 (Year 4 Undergraduate) 
Credits  10 
Home subject area  Undergraduate (School of Physics and Astronomy) 
Other subject area  None 
Course website 
http://www2.ph.ed.ac.uk/teaching/coursenotes/notes/list/75 
Taught in Gaelic?  No 
Course description  Particle physics studies the interactions of the fundamental constituents of matter, quarks and leptons.
This course is primarily an introduction to the experimental study of particle physics, but it also aims to give a basic understanding of the theoretical description of particle physics known as the Standard Model.

Entry Requirements (not applicable to Visiting Students)
Prerequisites 

Corequisites  
Prohibited Combinations  
Other requirements  At least 80 credit points accrued in courses of SCQF Level 9 or 10 drawn from Schedule Q. 
Additional Costs  None 
Information for Visiting Students
Prerequisites  None 
Displayed in Visiting Students Prospectus?  Yes 
Course Delivery Information

Delivery period: 2011/12 Semester 2, Available to all students (SV1)

WebCT enabled: No 
Quota: None 
Location 
Activity 
Description 
Weeks 
Monday 
Tuesday 
Wednesday 
Thursday 
Friday 
King's Buildings  Lecture   111   12:10  13:00     King's Buildings  Lecture   111      12:10  13:00  King's Buildings  Tutorial   111     09:00  09:50  
First Class 
Week 1, Tuesday, 12:10  13:00, Zone: King's Buildings. Rm 5215  JCMB 
Additional information 
Workshop/tutorial sessions, as arranged. 
Exam Information 
Exam Diet 
Paper Name 
Hours:Minutes 


Main Exam Diet S2 (April/May)  Particle Physics  2:00   
Summary of Intended Learning Outcomes
Upon completion of this course the student should be able to:
1) Describe particle physics interactions through the use of Feynman diagrams; understand the role of elementary bosons (photon, W and Z) as exchange particles in the electromagnetic and weak interactions, and be able to write down simple amplitudes;
2) Have a basic understanding of the Dirac equation and the use of its solutions as spinors to describe the states of elementary fermions (quarks and leptons);
3) Understand the concept of a renormalizable gauge theory through the example of Quantum Electrodynamics (QED);
4) Describe the role of discrete symmetries, and in particular parity violation in weak decays;
5) Describe the parton structure of the nucleon as deduced from deep inelastic scattering experiments; including the ideas of Bjorken scaling and scaling violation; draw the parton density functions for valence quarks, sea quarks and gluons;
6) Describe strong interactions in terms of gluon exchange between quarks; including the ideas of confinement and azymptotic freedom; have a basic knowledge of Quantum Chromodynamics (QCD) including the symmetries of SU(3) color and SU(3) flavor in the quark sector;
7) Categorize hadrons according to their quark content, spin and isospin; know the selection rules for strong, weak and electromagnetic decays of hadrons;
8) Describe the properties of heavy quarks, including their decays to light quarks; know the form of the CKM quarkmixing matrix and understand its role in CP violation in K and B meson decays;
9) Describe the properties of neutrinos, including recent experimental results on solar and atmospheric neutrino oscillations;
10) Describe the electroweak theory and have a knowledge of the experimental tests of the theory; understand the idea of spontaneous symmetry breaking and be able to describe the Higgs mechanism. 
Assessment Information
Degree Examination, 100% 
Special Arrangements
None 
Additional Information
Academic description 
Not entered 
Syllabus 
&· Introduction.
&· Feynman diagrams. Scattering crosssections. Decay rates.
&· Dirac equation. Spinors.
&· Electromagnetic interactions. Quantum Electrodynamics (QED).
&· Weak Interactions. Weak decays. Neutrino scattering.
&· Electronproton scattering. Deep inelastic scattering.
&· The parton model. Parton density functions. Scaling violation.
&· Strong interactions. Gluons. Quantum Chromodynamics (QCD).
&· Confinement and azymptotic freedom.
&· Quark model of hadrons. Isospin and Strangeness. Heavy quarks.
&· Production of hadrons. Resonances. Fragmentation and jets.
&· Weak decays of hadrons. CKM matrix.
&· Symmetries. Parity. Charge conjugation. Time reversal. CP and CPT.
&· Mixing and CP violation in K and B decays.
&· Neutrino oscillations. MNS matrix. Neutrino masses.
&· Electroweak Theory. W and Z masses. Precision tests at LEP.
&· Spontaneous symmetry breaking. The Higgs boson.
&· Beyond the Standard Model. Supersymmetry. Grand unification.
&· Physics in the LHC era.

Transferable skills 
Not entered 
Reading list 
Not entered 
Study Abroad 
Not entered 
Study Pattern 
Not entered 
Keywords  ParPh 
Contacts
Course organiser  Dr Victoria Martin
Tel: (0131 6)51 7042
Email: victoria.martin@ed.ac.uk 
Course secretary  Miss Paula Wilkie
Tel: (0131) 668 8403
Email: paw@roe.ac.uk 

