THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2012/2013
- ARCHIVE for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Undergraduate Course: Advanced Vision (Level 10) (INFR10001)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Course typeStandard AvailabilityAvailable to all students
Credit level (Normal year taken)SCQF Level 10 (Year 4 Undergraduate) Credits10
Home subject areaInformatics Other subject areaNone
Course website http://www.inf.ed.ac.uk/teaching/courses/av Taught in Gaelic?No
Course descriptionThis module aims to build on the introductory computer vision material taught in Introduction to Vision and Robotics. The main aim is to give students an understanding of main concepts in visual processing by constructing several vision systems during the course of the lecture series and practicals.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Introduction to Vision and Robotics (INFR09019)
Co-requisites
Prohibited Combinations Students MUST NOT also be taking Advanced Vision (Level 11) (INFR11031)
Other requirements Successful completion of Year 3 of an Informatics Single or Combined Honours Degree, or equivalent by permission of the School. This course assumes an ability to program in MATLAB and the following mathematical knowledge: Eigenvectors, Basic matrix algebra: multiply, inverse, Basic 3D geometry: rotations, translations, Covariance matrices, Principal Component Analysis, Basics of surfaces in 3D, Least Square Error estimation.
Additional Costs None
Information for Visiting Students
Pre-requisitesNone
Displayed in Visiting Students Prospectus?Yes
Course Delivery Information
Delivery period: 2012/13 Semester 2, Available to all students (SV1) Learn enabled:  No Quota:  None
Location Activity Description Weeks Monday Tuesday Wednesday Thursday Friday
CentralLecture1-11 14:00 - 14:50
CentralLecture1-11 14:00 - 14:50
First Class Week 1, Monday, 14:10 - 15:00, Zone: Central. Lecture Theatre 5, Appleton Tower
Exam Information
Exam Diet Paper Name Hours:Minutes
Main Exam Diet S2 (April/May)2:00
Summary of Intended Learning Outcomes
1 - understand machine vision principles (assessed by exam).
2 - be able to acquire and process raw image data (assessed practical).
3 - be able to relate image data to 3D scene structures (assessed practical).
4 - know the concepts behind and how to use several model-based object representations, and to critically compare them (assessed by exam).
5 - know many of the most popularly used current computer vision techniques (assessed by exam).
6 - undertake computer vision work in MATLAB (assessed practical).
7 - be able to review and critique current research work (literature review).
Assessment Information
Written Examination 70
Assessed Assignments 30
Oral Presentations 0

Assessment
There are 2 lab-based practicals at 10% each, plus a 3rd assignment for 10% more. The lab exercise is done in teams of 2. These exercises usually involve: 1) basic image processing and 2) 3D scene or video analysis. Any programming language can be used, but Matlab is the language used in the lecture materials. The 3rd assignment will be to create a web page summarising a topic in CVonline for which no material exists at present. There will be a small set of alternative topics suitable for level 10 students available for the web page construction.

If delivered in semester 1, this course will have an option for semester 1 only visiting undergraduate students, providing assessment prior to the end of the calendar year.
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus In the course of constructing six vision systems, students will learn about: image noise reduction, region growing, boundary segmentation, Canny edge detector, Hough transform, RANSAC, 2D and 3D coordinate systems, interpretation tree matching, rigid 2D object modeling, 2D position estimation, point distribution models, 3D range sensors, range data segmentation, 3D position estimation, stereo sensors, motion tracking, snakes and various approaches to object recognition.

The activities of the module are designed to further develop intellectual skills in the areas of: laboratory, writing (lab reports and short essays), teamwork, critical analysis, programming and laboratory skills.
Transferable skills Not entered
Reading list * R. Jain, R. Kasturi, B. G. Schunck, Machine Vision, McGraw Hill International Editions, 1995
* T. Morris - "Computer Vision and Image Processing" (Palgrave, 1st Edition, 2004)
* E. Trucco and A. Verri, "Introductory Techniques for 3-D Computer Vision", Prentice Hall, 1998
* E.R. Davis - "Machine Vision - Theory, Algorithms and Practice" (Elsevier, 3rd Edition, 2005)
Study Abroad Not entered
Study Pattern Lectures 20
Tutorials 0
Timetabled Laboratories 0
Non-timetabled assessed assignments 36
Private Study/Other 44
Total 100
KeywordsNot entered
Contacts
Course organiserDr Mary Cryan
Tel: (0131 6)50 5153
Email: mcryan@inf.ed.ac.uk
Course secretaryMiss Kate Weston
Tel: (0131 6)50 2701
Email: Kate.Weston@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Timetab
Prospectuses
Important Information
 
© Copyright 2012 The University of Edinburgh - 14 January 2013 4:09 am