THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2012/2013
- ARCHIVE for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Postgraduate Course: Decision Making in Robots and Autonomous Agents (INFR11090)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Course typeStandard AvailabilityAvailable to all students
Credit level (Normal year taken)SCQF Level 11 (Postgraduate) Credits10
Home subject areaInformatics Other subject areaNone
Course website http://www.inf.ed.ac.uk/teaching/courses/dmr/ Taught in Gaelic?No
Course descriptionThis course is intended as a specialized course on models and techniques for decision making in autonomous agents, such as intelligent robots, that must function in rich interactive settings involving environments with other agents and people.
This course will cover decision theoretic algorithms, interactive decision making including game theoretic techniques, learning in games and social settings, as well as selected topics involving decentralized systems. We will also look at aspects of human decision making, both to ask what people actually do and to consider what agents must do in light of this.
Issues of intelligent and fluid interaction by autonomous robots/agents, operating in environments including other strategic agents (either other autonomous agents or people), are becoming increasingly more important - with the advent of systems that routinely embody rich and sophisticated multi-modal interfaces, making it possible for us to now consider issues of interactive behaviour. At the same time but from a seemingly opposite perspective, 'market design' approaches are becoming increasingly more
suitable to the needs of collections of individually simple robots and agents (and people) that must work together on sophisticated large scale tasks.
The content of this course has connections to other courses within our existing curriculum, such as Reinforcement Learning and Algorithmic Game Theory. A noteworthy difference is that this course will focus more heavily on issues of modelling - how tasks associated with robotics and autonomous agents could/should be expressed and analysed using the formal language of these models, and also have more coverage of learning and potential connections to mechanisms of (boundedly rational) human decision making. This course will be self contained, discussing salient algorithmic techniques associated with some of the major models being considered. However, we expect this knowledge to be complemented by the more detailed discussion of techniques in the RL and AGTA courses. Similarly, students will benefit from prior exposure to robotics at the level of the R:SS course (or some equivalent exposure to autonomous agent design), which provides the perspective necessary to fully appreciate the concerns of this course.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements Prior exposure to mathematical models; Multivariate Calculus, Probability & Stochastic Processes
Additional Costs None
Information for Visiting Students
Pre-requisitesNone
Displayed in Visiting Students Prospectus?Yes
Course Delivery Information
Delivery period: 2012/13 Semester 2, Available to all students (SV1) Learn enabled:  No Quota:  None
Location Activity Description Weeks Monday Tuesday Wednesday Thursday Friday
CentralLecture1-11 11:10 - 12:00
CentralLecture1-11 11:10 - 12:00
First Class Week 1, Tuesday, 11:10 - 12:00, Zone: Central. Ground Floor, Adam House
Exam Information
Exam Diet Paper Name Hours:Minutes
Main Exam Diet S2 (April/May)2:00
Summary of Intended Learning Outcomes
- formulate practical problems involving interaction (e.g., human-robot interaction) in the language of decision and game theory
- analyze and evaluate conceptual problems with decision models involving multiple agents
- analyze and implement selected learning algorithms that consider incomplete information and partial observability
- demonstrate understanding of key issues related to decision making in humans; identify when, why and how standard models fail to capture real behaviour
Assessment Information
Written Examination 60
Assessed Assignments 40
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus The DMR course will cover the following major themes:

Introduction
- Problems involving interaction: Strategically rich human-robot interaction; Teams of autonomous agents; Market design
- Survey of existing models of interaction: from psychology, cognitive science and machine learning

Decision Theory:
- The utility maximization framework of decision theory
- Bandit problems, online learning and related models (e.g., matching problems)
- Markov Decision Processes and variants

Interactive Decision Making:
- Tools and techniques of game theoretic models
- Game theoretic models with incomplete information; models such as Interactive POMDP
- Repeated interaction
- Models of bargaining and negotiation (including the incomplete information case)
- Strategic learning in games

Mechanism Design and Related Topics in Decentralized Systems:
- Introduction to mechanism design and social choice
- Learning and mechanism design
- Graphical games, coordination games and social learning models
- Special topics: models of asymmetric information and privacy

Human Decision Making and Behavioural Issues:
- Behavioural aspects of human decision making - how real people think about risk, games, etc.
- Reconciling behavioural findings with formal models
Transferable skills Not entered
Reading list I. Gilboa, Theory of Decision Under Uncertainty, Cambridge University Press, 2009.

H.P. Young, Strategic Learning and its Limits, Oxford University Press, 2004.

N. Nisan, T. Roughgarden, E. Tardos, V.V. Vazirani, Algorithmic Game Theory, Cambridge University press, 2007.

P.W. Glimcher, Foundations of Neuroeconomic Analysis, Oxford University Press, 2011.
Study Abroad Not entered
Study Pattern Lectures: 18
Tutorials: 0
Timetabled Laboratories: 0
Non-timetabled assessed assignments: 25
Private Study/Other: 57
KeywordsNot entered
Contacts
Course organiserDr Michael Rovatsos
Tel: (0131 6)51 3263
Email: mrovatso@inf.ed.ac.uk
Course secretaryMiss Kate Weston
Tel: (0131 6)50 2701
Email: Kate.Weston@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Timetab
Prospectuses
Important Information
 
© Copyright 2012 The University of Edinburgh - 14 January 2013 4:10 am