THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2013/2014
Archive for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Undergraduate Course: Intelligent Autonomous Robotics (Level 10) (INFR10005)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Course typeStandard AvailabilityAvailable to all students
Credit level (Normal year taken)SCQF Level 10 (Year 4 Undergraduate) Credits10
Home subject areaInformatics Other subject areaNone
Course website http://course.inf.ed.ac.uk/iar Taught in Gaelic?No
Course descriptionThis course explored the fundamental problems involved in producing real world intelligent behaviour in robots, covering the different information processing methods and control architectures that have been developed and are currently in use, including probabilistic methods and approaches inspired by biological systems. The course is structured around a practical task to develop navigation algorithms on a real robot platform.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Introduction to Vision and Robotics (INFR09019)
Co-requisites
Prohibited Combinations Students MUST NOT also be taking Intelligent Autonomous Robotics (Level 11) (INFR11070) OR Robotics: Science and Systems (INFR11092)
Other requirements This course is open to all Informatics students including those on joint degrees. For external students where this course is not listed in your DPT, please seek special permission from the course organiser.

A good grounding in mathematics and some knowledge of first-order differential equations will be useful.
Additional Costs None
Information for Visiting Students
Pre-requisitesNone
Displayed in Visiting Students Prospectus?Yes
Course Delivery Information
Delivery period: 2013/14 Semester 1, Available to all students (SV1) Learn enabled:  No Quota:  None
Web Timetable Web Timetable
Course Start Date 16/09/2013
Breakdown of Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 20, Supervised Practical/Workshop/Studio Hours 10, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 66 )
Additional Notes
Breakdown of Assessment Methods (Further Info) Written Exam 50 %, Coursework 50 %, Practical Exam 0 %
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)2:00
Delivery period: 2013/14 Semester 1, Part-year visiting students only (VV1) Learn enabled:  No Quota:  None
Web Timetable Web Timetable
Course Start Date 16/09/2013
Breakdown of Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 20, Supervised Practical/Workshop/Studio Hours 10, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 66 )
Additional Notes
Breakdown of Assessment Methods (Further Info) Written Exam 50 %, Coursework 50 %, Practical Exam 0 %
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)2:00
Summary of Intended Learning Outcomes
1 - Demonstrate familiarity with current robot control architectures by ability to choose the most appropriate method for a given robot task, to specify the components and interactions involved, and to design and programme an algorithm that solves the task.
2 - Identify and describe limitations of each architecture, particularly when applied to real robots interacting with the real world, rather than simulations.
3 - In written answers, describe and assess attempts to use robots to model biological systems.
4 - Write reports (in the form of journal papers) that explain in detail the implementation and evaluation of a robot performing a navigation task.
Assessment Information
Written Examination 50
Assessed Assignments 50
Oral Presentations 0

Assessment
The coursework, carried out in groups of 2 or 3, requires you to program a robot to perform a specified task, and to present the results in written reports. The first two reports are worth 10% each, and the final report 30%.

If delivered in semester 1, this course will have an option for semester 1 only visiting undergraduate students, providing assessment prior to the end of the calendar year.
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus * The problem of designing intelligent autonomous systems.
* Reactive control of behaviour.
* The subsumption architecture.
* Sensor fusion.
* Control.
* Planning.
* Evolutionary and collective robotics.
* Robots as biological models.
* Simple navigation: gradient following, potential fields, landmarks.
* Navigation with maps: localisation and learning maps.

Relevant QAA Computing Curriculum Sections: Artificial Intelligence, Intelligent Information Systems Technologies
Transferable skills Not entered
Reading list * Valentino Braitenberg: Vehicles. MIT Press 1984
* Ronald C Arkin: Behavior-based Robotics, MIT press, 1998
* Robin R. Murphy: Introduction to AI Robotics, MIT Press, 2000
Introduction to Autonomous Mobile Records, R.Siegwart and I.Nourbakhsh
Study Abroad Not entered
Study Pattern Lectures 20
Tutorials 0
Timetabled Laboratories 10
Non-timetabled assessed assignments 40
Private Study/Other 30
Total 100
KeywordsNot entered
Contacts
Course organiserDr Mary Cryan
Tel: (0131 6)50 5153
Email: mcryan@inf.ed.ac.uk
Course secretaryMiss Kate Farrow
Tel: (0131 6)50 2706
Email: Kate.Farrow@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2013 The University of Edinburgh - 13 January 2014 4:27 am