# DEGREE REGULATIONS & PROGRAMMES OF STUDY 2013/2014 Archive for reference only THIS PAGE IS OUT OF DATE

 University Homepage DRPS Homepage DRPS Search DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

# Undergraduate Course: Algorithms in Practice (INFR10028)

 School School of Informatics College College of Science and Engineering Course type Standard Availability Not available to visiting students Credit level (Normal year taken) SCQF Level 10 (Year 4 Undergraduate) Credits 10 Home subject area Informatics Other subject area None Course website http://www.inf.ed.ac.uk/teaching/courses/ap Taught in Gaelic? No Course description Algorithms (and data structures) are fundamental to all computing. Any given problem will have many possible algorithms unless it is computationally unsolvable. It is therefore important to have criteria for choosing between competing algorithms. Various technical tools (e.g., runtime analysis) are covered in the third year pre-requisite course. However there remains the difficulty of what can be done with problems that do not seem to have algorithms that can be guaranteed to be efficient for all inputs. This course will focus on a few areas and discuss techniques for addressing such problems as well as pragmatic considerations in choosing algorithms. In addition students will have the opportunity to extend their knowledge of algorithms in the area of Computational Geometry. The course overall is practically based but theory informed.
 Pre-requisites Students MUST have passed: Algorithms and Data Structures (INFR09006) Co-requisites Prohibited Combinations Other requirements Successful completion of Year 3 of an Informatics Single or Combined Honours Degree, or equivalent by permission of the School. Additional Costs None
 Not being delivered
 1 - Discuss the obstacles to efficient exact solutions to certain problems. 2 - Given a problem related to those covered in the course assess its likely algorithmic difficulty. 3 - Given a proposed algorithm for a problem assess its suitability in terms of correctness and efficiency. 4 - Discuss notions of approximation for optimisation problems. 5 - Develop and justify appropriate algorithms for problems related to ones discussed in the course..
 Written Examination 70 Assessed Assignments 30 Oral Presentations 0 Assessment Three sets of exercises involving the use of appropriate software. The main emphasis will be on the interpretation and appropriateness of approaches rather than writing large amounts of software. There will also be some pencil and paper elements to accompany the justification of claims. If delivered in semester 1, this course will have an option for semester 1 only visiting undergraduate students, providing assessment prior to the end of the calendar year.
 None
 Academic description Not entered Syllabus * Informal introduction to efficiency concerns, optimisation problems and related decision problems, intractability, NP-completeness. * Theoretical and practical concerns: Linear Programming as a case study, comparison with Integer Programming techniques. Rephrasing practical problems as instances of Linear Programming and Iinteger Programming. * Computational Geometry. Topics such as: o Half plane intersection, relation to linear programming. o Smallest enclosing disc of points in the plane. o Voronoi diagrams and brief discusion of applications (e.g., in physics, astronomy, robotics); appropriate data structures (e.g., doubly connected edge lists). o Delaunay triangulations, study of what constitutes a "good" triangulation. * Approximation algorithms for "hard" problems covering heuristics and performance guarantees. Topics such as: o Notions of approximation: relative error, approximation schemes. o The vertex cover problem. o The travelling salesman problem: with and without the triangle inequality. o The set covering problem. o The subset sum problem. * Survey of various techniques, e.g., Markov chains. Relevant QAA Computing Curriculum Sections: Data Structures and Algorithms. Transferable skills Not entered Reading list * T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: Introduction to Algorithms (2nd Edition). MIT Press, 2002 * H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs in Computer Science, Springer, 1987. * F.P. Preparata and M.I. Shamos, Computational Geometry-an introduction, Springer, 1985. * Vijay Vazirani, Approximation Algorithms, Springer 2001. Study Abroad Not entered Study Pattern Lectures 20 Tutorials 0 Timetabled Laboratories 0 Non-timetabled assessed assignments 30 Private Study/Other 50 Total 100 Keywords Not entered
 Course organiser Dr Amos Storkey Tel: (0131 6)51 1208 Email: A.Storkey@ed.ac.uk Course secretary Miss Kate Weston Tel: (0131 6)50 2692 Email: Kate.Weston@ed.ac.uk
 Navigation Help & Information Home Introduction Glossary Search DPTs and Courses Regulations Regulations Degree Programmes Introduction Browse DPTs Courses Introduction Humanities and Social Science Science and Engineering Medicine and Veterinary Medicine Other Information Combined Course Timetable Prospectuses Important Information
© Copyright 2013 The University of Edinburgh - 13 January 2014 4:27 am