THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2013/2014
Archive for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Mechanical

Undergraduate Course: Thermodynamics 3 (MECE09010)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Course typeStandard AvailabilityAvailable to all students
Credit level (Normal year taken)SCQF Level 9 (Year 3 Undergraduate) Credits10
Home subject areaMechanical Other subject areaNone
Course website http://www.see.ed.ac.uk/teaching/mech/ Taught in Gaelic?No
Course descriptionThe course presents thermodynamics as a real world subject and insists that there is a pattern to working with thermodynamics which is summarised as Principles, Properties, Processes. This pattern is applied to a variety of machines and devices including turbines, reciprocating compressors, nozzles, power cycles, air conditioning systems and cooling towers. A final separate section introduces the basic ideas of heat transfer.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Engineering Thermodynamics 2 (SCEE08006)
Co-requisites
Prohibited Combinations Students MUST NOT also be taking Thermodynamics for power plant engineering with CO2 capture (PGEE10007)
Other requirements None
Additional Costs None
Information for Visiting Students
Pre-requisitesNone
Displayed in Visiting Students Prospectus?Yes
Course Delivery Information
Delivery period: 2013/14 Semester 1, Available to all students (SV1) Learn enabled:  Yes Quota:  None
Web Timetable Web Timetable
Class Delivery Information Tutorials either Tue 11.10-12:00 or Wed 11.10-12.00.
Course Start Date 16/09/2013
Breakdown of Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 20, Seminar/Tutorial Hours 10, Supervised Practical/Workshop/Studio Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 66 )
Additional Notes
Breakdown of Assessment Methods (Further Info) Written Exam 80 %, Coursework 0 %, Practical Exam 20 %
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)Thermodynamics 32:00
Summary of Intended Learning Outcomes
On completion of the course, the students should be able to
1. Apply the First Law to simple closed and steady flow systems using appropriate property data from tables, charts and equations.
2. Use a simplified theoretical model for reciprocating compressors to estimate the performance of these machines and explain the limitations of the theory.
3. Use velocity triangles to determine the work transfer in axial flow impulse and reaction turbines.
4. Use one-dimensional compressible flow theory to determine the gas velocities and flow rates in choked and unchoked nozzles.
5. Use the First Law to analyse the performance of simple power plant.
6. Give a qualitative explanation of some of the implications of the Second Law for these plants.
7. Use the simple theory of mixtures of ideal gases and vapours to calculate the performance of plant such as air conditioning systems and cooling towers.
8. Carry out simple heat transfer calculations involving conduction, convection and radiation.
Assessment Information
Examination 80%
Practicals (laboratory) 20%
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus Not entered
Transferable skills Not entered
Reading list Not entered
Study Abroad Not entered
Study Pattern Not entered
KeywordsNot entered
Contacts
Course organiserDr Jia Li
Tel:
Email: J.Li@ed.ac.uk
Course secretaryMs Tina Mcavoy
Tel: (0131 6)51 7080
Email: Tina.McAvoy@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2013 The University of Edinburgh - 13 January 2014 4:42 am