THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2013/2014
Archive for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Biological Sciences : Molecular Biology

Undergraduate Course: Mammalian Transgenic Technology and Regenerative Medicine (MLBI10020)

Course Outline
SchoolSchool of Biological Sciences CollegeCollege of Science and Engineering
Course typeStandard AvailabilityAvailable to all students
Credit level (Normal year taken)SCQF Level 10 (Year 4 Undergraduate) Credits10
Home subject areaMolecular Biology Other subject areaNone
Course website None Taught in Gaelic?No
Course descriptionThe course will cover the technologies and principles involved in the generation of genetically modified mammalian organisms, and explore their use in fundamental and applied research, with special emphasis on stem cell biology, development and genetic modeling of human disease. Specific topics will include use of homologous and site-specific DNA recombination in generation of normal and BAC transgenes, embryonic stem cell-based gene targeting and methods for modification of the mammalian germline. In addition, the generation and use of human and mouse induced pluripotent stem cells, their modification and directed differentiation, and the use of derived cells in cell therapies, disease modeling, pharmacology and basic research will be covered. Sessions will include student-led discussion of relevant literature.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Additional Costs None
Information for Visiting Students
Pre-requisitesNone
Displayed in Visiting Students Prospectus?No
Course Delivery Information
Delivery period: 2013/14 Semester 2, Not available to visiting students (SS1) Learn enabled:  Yes Quota:  17
Web Timetable Web Timetable
Course Start Date 13/01/2014
Breakdown of Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 30, Summative Assessment Hours 3, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 65 )
Additional Notes
Breakdown of Assessment Methods (Further Info) Written Exam 0 %, Coursework 100 %, Practical Exam 0 %
Exam Information
Exam Diet Paper Name Hours & Minutes
Outwith Standard Exam Diets February2:00
Summary of Intended Learning Outcomes
Students will after the course: (1) be familiar with the molecular technologies used to generate and regulate mammalian transgenes, including recombinases, gene regulatory systems and the use of protein fusions in protein activity control; (2) understand the biological background for and use of injection-based and ES cell-based genomic modification, and their respective advantages and disadvantages; (3) be familiar with the use of genetic modification in the modeling of human diseases, including cancer, CNS disorders and congenital monogenic diseases; (4) have knowlege of the biological basis for ES cell pluripotentcy and the technologies involved in generation of induced pluripotent stem (iPS) cells; (5) know the use of ES and iPS cells in disease modeling, pharmacological research and cell therapy; (6) be able to comprehend and present scientific literature in the areas covered.
Assessment Information
Assessment will be through open book exam (6-9 questions assessed/student, 2hr duration).
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus Not entered
Transferable skills Not entered
Reading list Not entered
Study Abroad Not entered
Study Pattern Not entered
KeywordsMLBI-MTTRMed
Contacts
Course organiserProf Andrew Smith
Tel: (0131 6)50 6497
Email: andrew.smith@ed.ac.uk
Course secretaryMiss Donna Wright
Tel: (0131 6)51 7051
Email: Donna.Wright@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2013 The University of Edinburgh - 13 January 2014 4:43 am