THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2013/2014 -
- ARCHIVE as at 1 September 2013 for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Postgrad (School of Engineering)

Postgraduate Course: The Finite Element Method (PGEE11046)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Course typeStandard AvailabilityNot available to visiting students
Credit level (Normal year taken)SCQF Level 11 (Postgraduate) Credits10
Home subject areaPostgrad (School of Engineering) Other subject areaNone
Course website None Taught in Gaelic?No
Course descriptionThe finite element method is an indispensable tool for engineers in all disciplines. This course introduces students to the fundamental theory of the finite element method as a general tool for numerically solving differential equations for a wide range of engineering problems. A range of field problems described by the Laplace, Poisson and Fourier equations is presented first and all steps of the FE formulation is described. Specific applications in heat transfer and flow in porous media are demonstrated with associated tutorials. The application of the method to elasticity problems is then developed from fundamental principles. Specific classes of problem are then discussed based on abstractions and idealisations of 3D solids, such as plane stress and strain, Euler-Bernoulli and Timoshenko beams and Kirchoff and Mindlin-Reissner plates and shells.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed:
Co-requisites
Prohibited Combinations Other requirements None
Additional Costs None
Course Delivery Information
Not being delivered
Summary of Intended Learning Outcomes
By the end of the course, the student should be able to:
- demonstrate the ability to produce FEM based numerical discretisations of mathematical descriptions (differential equations) of simple problems in continuum mechanics;
- demonstrate the ability to use FEM for solving simple steady and transient field problems using a standard software package;
- demonstrate the ability to use FEM to produce a reliable prediction of displacements and stresses in linear elastic bodies of relevance to engineering practice using a standard software package;
- demonstrate the ability to make a critical assessment of the calculation.
Assessment Information
The assessment will be made on the basis of: Intermittent assessment 50%. Degree examination 50%
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus Not entered
Transferable skills Not entered
Reading list Not entered
Study Abroad Not entered
Study Pattern Not entered
KeywordsNot entered
Contacts
Course organiserDr Asif Usmani
Tel: (0131 6)50 5789
Email: Asif.Usmani@ed.ac.uk
Course secretaryMr Craig Hovell
Tel: (0131 6)51 7080
Email: c.hovell@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2013 The University of Edinburgh - 10 October 2013 5:01 am