THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2013/2014 -
- ARCHIVE as at 1 September 2013 for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Physics and Astronomy : Undergraduate (School of Physics and Astronomy)

Undergraduate Course: Symmetries of Quantum Mechanics (PHYS10083)

Course Outline
SchoolSchool of Physics and Astronomy CollegeCollege of Science and Engineering
Course typeStandard AvailabilityAvailable to all students
Credit level (Normal year taken)SCQF Level 10 (Year 3 Undergraduate) Credits10
Home subject areaUndergraduate (School of Physics and Astronomy) Other subject areaNone
Course website None Taught in Gaelic?No
Course descriptionBuilding on the material presented in the Quantum Mechanics course, this course aims to introduce the basic mathematical tools of Quantum Mechanics with a special emphasis on the connection between physical phenomena and mathematical modelling. The Hilbert space of physical states is reviewed as a particular case of a linear vector space. General properties of representation theory are discussed for the case of finite groups and are applied to quantum mechanical systems. Representations of the continuous groups U(1), SO(3), and SU(2) are presented and discussed in relation with invariance under translations and rotations. The general theory of angular momentum is introduced and applied to cases of physical interest. Quantum mechanical results are compared to their classical counterparts for a number of physical systems.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: ( Mathematics for Physics 3 (PHYS08037) AND Physics 2B (PHYS08023))
Students MUST have passed: Quantum Mechanics (PHYS09017)
Co-requisites
Prohibited Combinations Other requirements None
Additional Costs None
Information for Visiting Students
Pre-requisitesNone
Displayed in Visiting Students Prospectus?Yes
Course Delivery Information
Delivery period: 2013/14 Semester 2, Available to all students (SV1) Learn enabled:  Yes Quota:  None
Web Timetable Web Timetable
Class Delivery Information Workshop/tutorial sessions, as arranged.
Course Start Date 13/01/2014
Breakdown of Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 22, Supervised Practical/Workshop/Studio Hours 22, Summative Assessment Hours 6, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 48 )
Additional Notes
Breakdown of Assessment Methods (Further Info) Written Exam 80 %, Coursework 20 %, Practical Exam 0 %
Exam Information
Exam Diet Paper Name Hours:Minutes
Main Exam Diet S2 (April/May)2:00
Summary of Intended Learning Outcomes
Upon successful completion of this course it is intended that a student will be able to:
1. master the mathematical tools that are used for the description of elementary quantum systems;
2. model simple physical systems according to the postulates of quantum mechanics;
3. understand the importance of symmetry principles in classical and quantum systems;
4. use group theory to solve physical problems;
5. understand the general theory of angular momentum and its connection to the group of spatial rotations;
6. apply the above concepts to the study of new (unseen) problems.
Assessment Information
Coursework 100%
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus Not entered
Transferable skills Not entered
Reading list Not entered
Study Abroad Not entered
Study Pattern Not entered
KeywordsSymQM
Contacts
Course organiserDr Roman Zwicky
Tel:
Email:
Course secretaryMiss Jillian Bainbridge
Tel: (0131 6)50 7218
Email: J.Bainbridge@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2013 The University of Edinburgh - 10 October 2013 5:13 am