THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2013/2014 -
- ARCHIVE as at 1 September 2013 for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Physics and Astronomy : Undergraduate (School of Physics and Astronomy)

Undergraduate Course: Radiation and Matter (PHYS11020)

Course Outline
SchoolSchool of Physics and Astronomy CollegeCollege of Science and Engineering
Course typeStandard AvailabilityAvailable to all students
Credit level (Normal year taken)SCQF Level 11 (Year 4 Undergraduate) Credits10
Home subject areaUndergraduate (School of Physics and Astronomy) Other subject areaNone
Course website None Taught in Gaelic?No
Course descriptionWe start by learning the physics of radiation and its quantal interaction with matter, then go on to study this interaction in various astrophysical environments to define the nature and limitations of observation. Finally we apply these techniques to several important and characteristic astronomical observations, such as the 21cm radiation of atomic hydrogen used to weigh galaxies, the carbon monoxide emission used to map star nurseries, and the hydrogen Lyman alpha line forest used to determine the distribution of galaxy-forming matter throughout the Universe.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements At least 80 credit points accrued incourses of SCQF Level 9 or 10 drawn from Schedule Q.
Additional Costs None
Information for Visiting Students
Pre-requisitesNone
Displayed in Visiting Students Prospectus?Yes
Course Delivery Information
Not being delivered
Summary of Intended Learning Outcomes
Upon successful completion of the course, students should be able to:
1)write Maxwell's equations, demonstrate that these can be expressed gauge covariant potentials; show that they lead to definitions of energy density and flux in the radiation field, outline derive the wave equation for the potential;
2)write the solution to the wave equation, demonstrate that in the wave zone it consists of spherical waves with 1/r amplitude dependence and speed c, and give the explicit results for point charges from which field and flux are derived;
3)apply these results to simple examples;
4)describe the free electromagnetic field in terms of SHM modes;
5)by comparison with quantized SHM, describe the properties of photons;
6)describe the nature of gauge invariance in wave functions and electromagnetism, and hence derive the interaction Hamiltonian; use Fermi's golden rule to give the transition rate;
7)(with guidance) derive the dipole transition rate and outline those for magnetic dipole and electric quadrupole;
8)be able to calculate intensity and flux density from a uniform source in terms of its density and temperature, and of the transition rates and collision cross sections;
9)be able to calculate and explain the appearance of emission and absoption lines in terms of optical depth and the above local physical properties of the source;
10)understand and be able to derive in outline a variety of astronomically important examples of line emission and absorption - in particular the Lyman alpha and 21cm lines of H, the rotational emission from CO and the diagnostics of temperature and density obtainable from fine structure transitions in oxygen (and other) ions;
11)be able to apply these techniques to predict and interpret observational results in a variety of simple cases involving line emission and absorption.
Assessment Information
Degree Examination, 100%
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus Not entered
Transferable skills Not entered
Reading list Not entered
Study Abroad Not entered
Study Pattern Not entered
KeywordsRandM
Contacts
Course organiserProf James Dunlop
Tel: (0131) 668 8349
Email: jsd@roe.ac.uk
Course secretaryMiss Paula Wilkie
Tel: (0131) 668 8403
Email: Paula.Wilkie@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2013 The University of Edinburgh - 10 October 2013 5:13 am