THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2014/2015
Archive for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Biomedical Sciences : Biomedical Sciences

Undergraduate Course: Biomedical Sciences 3: Contemporary Applications (VS2) (BIME09010)

Course Outline
SchoolSchool of Biomedical Sciences CollegeCollege of Medicine and Veterinary Medicine
Credit level (Normal year taken)SCQF Level 9 (Year 3 Undergraduate) AvailabilityPart-year visiting students only
SCQF Credits20 ECTS Credits10
SummaryThe course will attempt to develop students¿ understanding of how current biomedical knowledge is generated from experiment and disseminated through the research literature, to prepare students for the transition to senior Honours. It aims to provide students with a secure grounding in the core skills of designing scientifically valid experiments, collecting, analysing and interpreting data, communicating scientific ideas and results, and in being able to critically evaluate primary research papers. It will cover a variety of experimental techniques commonly used in the biomedical sciences, so that students have an appreciation of when such techniques can be used, their strengths and weaknesses, and the type of data they produce. To illustrate some broad themes within contemporary biomedical sciences and the power of interdisciplinary approaches, the course will also cover the drug discovery and development process, the use of computational modelling approaches, the growing importance of large datasets (eg from next-generation sequencing and microarrays), and ethical issues in biomedical research.

Teaching will be through a combination of lectures, practicals (both wet and dry), and tutorials. Each practical and tutorial will be linked to associated material covered in the lecture series. Extensive use will also be made of online learning environments to provide learning resources, self-assessment exercises, and peer-feedback mechanisms (PeerWise). A variety of in-course assessments will give an opportunity to students to assess their understanding of material and to receive both formative and summative feedback.
Course description Biomedical Sciences 3 VS2 is the semester 2 component of Biomedical Sciences 3 suitable for visiting students.

Lectures will be structured around several themes:

Keynote lectures - 2 lectures illustrating how integrated application of the approaches covered in this course are furthering understanding of key issues in biomedical science.

Contemporary themes - 6 lectures covering the drug discovery and development process, the use of modelling approaches, the growing importance of large datasets (eg in bioinformatics), and ethical issues in biomedical research.

Obtaining data from experiments - 2 lectures on high-throughput methods of molecular analysis. Lectures will frame the techniques in the context of specific biomedical topics (eg role of genes in diseases such as cystic fibrosis, Alzheimers and stroke). The emphasis will be on a ¿problem-driven¿ rather than ¿technique-driven¿ mode of teaching.

Scientific communication - 1 or 2 - lectures on how to effectively communicate biomedical data and knowledge in a variety of formats. These prepare students for elements of ICA in semester 2 that are also linked to semester 2 tutorials.

Additional lectures will serve to introduce the concepts involved in specific practicals and to give rapid (class-wide) feedback on assignments (prior to detailed individual feedback delivered in other ways).

Practicals:
Practicals are a vital part of the course, giving students experience in designing experiments, collecting data and analysing it. Two computer-based practicals will run, these practicals will have associated elements of in-course assessment.

Practical 1 (Sem.2) ¿ (Computer-based) Simulation Models of Neuroendocrine Function
Obtaining data from a simulation model of the pituitary, formulating and testing hypotheses.

Practical 2 (Sem.2) ¿ (Computer-based) Bioinformatics
Extracting datasets (eg on gene expression and sequence variants) from online databases and using them to test specific quantitative hypotheses, with appropriate statistical controls.

Tutorials:
Within the main BMS3 course, students on specific Honours Programmes will be allocated to associated tutorial groups, so that each Honours Programme can deliver Semester 2 tutorials tailored to their own cohort. Visiting students will be asked ¿ for the purposes of the course ¿ to choose a Programme so that they can be assigned to a tutorial group.

Two tutorials in semester 2 will then cover papers/topics specific to the particular Programmes. The first of these (Tutorial 3) will lead to an assessed poster presentation, just prior to Innovative Learning Week. The exercise will centre on a topic within the Programme discipline: the tutor will select suitable papers and the student must then select one of these and produce an A3 poster which summarises the research topic, identifies the resulting research questions, and provides a plan for how these can be addressed in the next study in that particular field. Submission will be just prior to Innovative Learning Week, so the posters could then be displayed (and assessed) during ILW, and feedback provided. (Development of the skill in poster design & execution will come in the second part of Semester 2, with submission of a second poster, on the results from Practical 5 on Simulation Models of Neuroendocrine Function.) Tutorial 4 will be an unassessed ¿journal-club¿ style session, where groups of students present on key papers in their specific Honours discipline (following a preparatory teaching session specific to each Honours Programme). This is intended to help prepare students for giving assessed oral presentations in Year 4.

A third tutorial will focus on essay writing under exam conditions. The students will have been given a sample essay question prior to the tutorial, which they will answer in their independent study time. At the tutorial the students will both assess the work of their peers (using a marking scheme) and receive feedback from their tutor.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Information for Visiting Students
Pre-requisitesNone
Course Delivery Information
Academic year 2014/15, Part-year visiting students only (VV1) Quota:  None
Course Start Semester 2
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 200 ( Lecture Hours 17, Seminar/Tutorial Hours 2, Supervised Practical/Workshop/Studio Hours 9, Feedback/Feedforward Hours 1, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 4, Directed Learning and Independent Learning Hours 165 )
Assessment (Further Info) Written Exam 60 %, Coursework 40 %, Practical Exam 0 %
Additional Information (Assessment) Exam:ICA 60:40 weighting
Exam: 2 hours, essay/long-answer style questions.

ICA elements:
Poster on a data analysis topic
Poster arising from Practical on Simulations of Neuroendocrine Function
PeerWise engagement

Further information on the format of the degree examination and the ICA components will be provided in the Course Handbook.
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)Biomedical Sciences 3 Semester 2 Degree Examination2:00
Learning Outcomes
Students successfully completing the course should:

¿ Develop an understanding of broad themes within contemporary biomedical sciences

¿ Acquire the ability to understand, interpret and evaluate primary biomedical research papers

¿ Acquire the ability to frame scientific hypotheses and to design scientifically valid experiments to test them using appropriate experimental techniques

¿ Gain experience in collecting sets of data, analysing them and utilising formal statistical methods to test hypotheses

¿ Have demonstrated technical skill in accurately writing up practical reports

¿ Gain competence in the accurate communication of biomedical knowledge
Reading List
None
Additional Information
Graduate Attributes and Skills Not entered
KeywordsInfectious Diseases, Neuroscience, Pharmacology, Physiology, Reproductive Biology, Medical Biology
Contacts
Course organiserDr Martin Simmen
Tel: (0131 6)51 1773
Email: M.Simmen@ed.ac.uk
Course secretaryMs Tracy Noden
Tel: (0131 6)50 3717
Email: Tracy.Noden@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2014 The University of Edinburgh - 12 January 2015 3:30 am