THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2014/2015
Archive for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Undergraduate Course: Computer Design (INFR09010)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 9 (Year 3 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThis course provides an introduction to the fundamental concepts of the different ways computers can be analysed and designed. The course does not look at the differences between machines with different types of instruction set, nor does it cover design techniques for extracting maximum performance from computers - these aspects of computer hardware are covered in the Computer Architecture course. The issues and techniques covered in the Computer Design course are relevant to the design of all computers, regardless of their particular architecture.

The course is partitioned into three sections. The short first section revises the design of combinational and sequential logic. The second section demonstrates how to analyse and design systems of the complexity of a simple CPU or I/O controller. The third section of the course covers the design of a complete computer capable of executing assembly code programs and different control strategies for performing I/O.
Course description Logic Design Revision Simple combinational logic design to state machines for sequential circuits.

Processor Design Data path and control. Fixed program controllers: example and design procedure. Instruction set processors: data path design, simple control, microprogrammed control. ALU design: addition, ripple carry and look ahead adders, negative numbers & subtraction; multiplication sequential multiplier, modification for 2's complement, combinational multiplier, division. Floating point numbers: addition, multiply and divide, implementations.

Computer Systems Memory: Byte vs. word addressing, memory system design, error detection and correction. I/O Design: I/O controller design. Connection of I/O controllers to CPU, synchronization of I/O and CPU, polling, interrupts. Direct Memory Access, bus arbitration, DMA controller implementation. I/O processors. Synchronous and asynchronous buses. Simple performance enhancements to the basic architecture. RISC.

Relevant QAA Computing Curriculum Sections: Computer Hardware Engineering
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements This course is open to all Informatics students including those on joint degrees. For external students where this course is not listed in your DPT, please seek special permission from the course organiser.
Information for Visiting Students
Pre-requisitesVisiting students are required to have comparable background to that
assumed by the course prerequisites listed in the Degree Regulations &
Programmes of Study. If in doubt, consult the course lecturer.
Course Delivery Information
Academic year 2014/15, Available to all students (SV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 20, Supervised Practical/Workshop/Studio Hours 30, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 46 )
Assessment (Further Info) Written Exam 75 %, Coursework 25 %, Practical Exam 0 %
Additional Information (Assessment) There are four practical exercises for the course. All take place in the hardware lab. The first exercise introduces students to the software and hardware to be used by following a design tutorial all the way through to implementation on a FPGA. The second exercise gives students familiarity with a sequential logic design implemented in a programmable microcontroller. The third exercise requires the design and implementation of the microcode for a specified cpu data path to build a real computer on the FPGA board and a final exercise to program the processor to drive some I/O devices.

You should expect to spend approximately 20 hours on the coursework for this course.

If delivered in semester 1, this course will have an option for semester 1 only visiting undergraduate students, providing assessment prior to the end of the calendar year.
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)2:00
Resit Exam Diet (August)2:00
Academic year 2014/15, Part-year visiting students only (VV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 20, Supervised Practical/Workshop/Studio Hours 30, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 46 )
Assessment (Further Info) Written Exam 75 %, Coursework 25 %, Practical Exam 0 %
Additional Information (Assessment) There are four practical exercises for the course. All take place in the hardware lab. The first exercise introduces students to the software and hardware to be used by following a design tutorial all the way through to implementation on a FPGA. The second exercise gives students familiarity with a sequential logic design implemented in a programmable microcontroller. The third exercise requires the design and implementation of the microcode for a specified cpu data path to build a real computer on the FPGA board and a final exercise to program the processor to drive some I/O devices.

You should expect to spend approximately 20 hours on the coursework for this course.

If delivered in semester 1, this course will have an option for semester 1 only visiting undergraduate students, providing assessment prior to the end of the calendar year.
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)2:00
Learning Outcomes
1 - Build state machines to implement a circuit or system to a specification.
2 - Interconnect circuits for systems of higher complexity, specifically up to the complexity of the components required in a simple computer processor datapath.
3 - Analyse and synthesise circuits to control and sequence the flow of data within a simple cpu or microcontroller.
4 - Analyse and synthesise circuits to control and sequence the flow of data between a simple cpu, memory systems and input/output device controllers.
5 - Design and implement a microprogrammed controller for a given simple cpu architecture.
6 - Gain familiarity with: design and simulation software; designing systems with Verilog HDL; programming designs into a large field-programmable gate array device (FPGA); using an assembly language to implement a design in a programmable microcontroller.
Reading List
* V. C. Hamacher, Z. G. Vranesic & S. G. Zaky, 'Computer Organization', 5th edition, McGraw-Hill, 2001. Covers almost all the syllabus (and more). Similar in approach to the lectures.
* D. A. Patterson & J. L. Hennessy, 'Computer Organization & Design: The Hardware/Software Interface', 2nd edition, Morgan Kaufmann, 1998. A different view of most of the material in the syllabus, and a lot of interesting stuff.
* M. M. Mano, 'Digital Design', 2nd edition, Prentice-Hall, 1991. A very good book on logic design, with much more coverage of that part of the syllabus than the previous two books.
* A. S. Tanenbaum, 'Structured Computer Organization', 4th edition, Prentice-Hall, 1999. More a CS2 level book, but worth referring to.
Additional Information
Course URL http://course.inf.ed.ac.uk/cd
Graduate Attributes and Skills Not entered
KeywordsNot entered
Contacts
Course organiserProf Nigel Topham
Tel: (0131 6)50 5122
Email: npt@inf.ed.ac.uk
Course secretaryMrs Victoria Swann
Tel: (0131 6)51 7607
Email: Vicky.Swann@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2014 The University of Edinburgh - 12 January 2015 4:10 am