Archive for reference only

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Undergraduate Course: Computational Cognitive Science (INFR09035)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 9 (Year 3 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThis course aims to introduce students to the basic concepts and methodology needed to implement and analyse computational models of cognition. It considers the fundamental issues of using a computational approach to explore and model cognition. In particular, we explore the way that computational models relate to, are tested against, and illuminate psychological theories and data.

The course will introduce both symbolic and subsymbolic modelling methodologies, and provide practical experience with implementing models. The symbolic part will focus on cognitive architectures,
while the subsymbolic part will introduce probabilistic models.
Course description - An introduction/review of the idea of computational approaches to studying cognition; the mind as information-processing system; Marr's levels of analysis (computational, algorithmic, implementation).
- The general motivations underlying the computational modelling of cognition, and different kinds of questions that can be answered (e.g., why do cognitive processes behave as they do, or what algorithms might be used to carry out this behaviour? What kinds of information are used, or how is this information processed/integrated over time?)
- Mechanistic/algorithmic approaches and issues addressed by these approaches: parallel versus serial processing, flow of information, timing effects.
- Rational/probabilistic approaches and issues addressed by these approaches: adaptation to the environment, behaviour under uncertainty, learning, timing effects.
- General issues: top-down versus bottom-up processing, online processing, integration of multiple sources of information.
- Methodology and issues in the development and evaluation of cognitive models: Which psychological data are relevant? What predictions are made by a model? How could these be tested?
- Modelling techniques: in the assignments, students will experiment with both symbolic (rulebased) and subsymbolic (probabilistic) cognitive models.
- Example models: in a number of areas we will look at the theories proposed and different ways of modelling them. Areas discussed will include several of the following: language processing, reasoning, memory, high-level vision, categorization. Specific models will be introduced and analysed with regard to relevant psychological data.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements This course is open to all Informatics students including those on joint degrees. For external students where this course is not listed in your DPT, please seek special permission from the course organiser.

Students who have completed Year 2 of another degree will also be accepted provided they have some programming experience. Informatics 1: Cognitive Science is strongly recommended.
Information for Visiting Students
Course Delivery Information
Not being delivered
Learning Outcomes
- Demonstrate knowledge of the basic concepts and methodologies of cognitive modelling, by being able to design simple cognitive models for sample problems.
- Demonstrate understanding of the relationship between computational models and psychological theories, by being able to critically assess the psychological adequacy of a given model.
- Qualitatively and quantitatively evaluate computational models of cognition using a range of techniques, when given a model and a set of experimental data that it is supposed to account for.
- Demonstrate an awareness of the most important computational approaches to cognitive modelling, by being able to use these approaches to formalise theories that are couched in potentially
vague and ambiguous terms (e.g., natural language).
- Use existing modelling tools (e.g., Cogent or Matlab) to design and test computer implementations of cognitive models (both existing models from the literature and simple models they have designed themselves).
Reading List
Modelling High-Level Cognitive Processes, Richard Cooper, Lawrence Erlbaum
Additional Information
Course URL
Graduate Attributes and Skills Not entered
KeywordsNot entered
Course organiserDr Frank Keller
Tel: (0131 6)50 4407
Course secretaryMrs Victoria Swann
Tel: (0131 6)51 7607
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information
© Copyright 2014 The University of Edinburgh - 12 January 2015 4:10 am