THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2014/2015
Archive for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Undergraduate Course: Compiling Techniques (INFR10053)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 10 (Year 3 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThis course describes the phases of a modern programming language compiler with an emphasis on widely-used techniques. The course project will require students to implement a complete compiler for a simple educational programming language, targeting an abstract machine such as
the JVM.
Course description * Introduction: structure of a compiler
* Lexical analysis: tokens, regular expressions, Lex
* Parsing: context-free grammars, predictive and LR parsing, Yacc
* Abstract syntax: semantic actions, abstract parse trees
* Semantic analysis: symbol tables, bindings, type-checking
* Stack frames: representation and abstraction
* Intermediate code: representation trees, translation
* Basic blocks and traces: canonical trees and conditional branches
* Instruction selection: algorithms for selection, RISC and CISC
* Liveness analysis: solution of dataflow equations
* Register allocation: colouring by simplification, coalescing
* Advanced Topics: automatic parallelisation, popular open-source compilers: GCC, LLVM

Relevant QAA Computing Curriculum Sections: Compilers and Syntax Directed Tools
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Students MUST NOT also be taking Compiling Techniques (INFR09007)
Other requirements This course is open to all Informatics students including those on joint degrees. For external students where this course is not listed in your DPT, please seek special permission from the course organiser.

This course has the following mathematics prerequisites:

1 - General background: integers/real numbers, set theory: union, intersection,...
2 - Graph theory, in particular, directed/undirected graphs, cyclic/acyclic graphs, labeled graphs, trees, subgraph isomorphism, graph colouring.
3 - Algebraic structures, in particular, lattices and join/meet.
Information for Visiting Students
Pre-requisitesNone
Course Delivery Information
Academic year 2014/15, Available to all students (SV1) Quota:  None
Course Start Semester 2
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 20, Seminar/Tutorial Hours 8, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 68 )
Assessment (Further Info) Written Exam 75 %, Coursework 25 %, Practical Exam 0 %
Additional Information (Assessment) Two practical compiler exercises (Part 1 on the compiler front-end and IR generation, part 2 on semantic analysis and code generation).

You should expect to spend approximately 30 hours on the coursework for this course.

If delivered in semester 1, this course will have an option for semester 1 only visiting undergraduate students, providing assessment prior to the end of the calendar year.
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)2:00
Resit Exam Diet (August)2:00
Learning Outcomes
1 - Understanding of the challenges involved in compilation (semantic gap between input and output languages, compiler efficiency and code quality)
2 - Understanding of the phases involved in compilation, and knowledge of the techniques applied.
3 - Ability to understand design decisions in modern compilers and to justify these.
4 - Ability to develop and apply modifications to standard compilation techniques wherever this is necessary.
5 - Ability to analyse compilation tasks and to apply standard compilation techniques.
6 - Ability to implement standard compilation algorithms.
7 - Gain an understanding of the challenges involved in compilation for modern architectures and the approaches taken in modern compilers
Reading List
* Andrew W. Appel, Modern Compiler Implementation, Cambridge University Press, 1998. Three versions of this book are available which present code fragments from the compiler in the languages C, Standard ML and Java. Students should use whichever version of the book they prefer.
* Alfred V. Aho, Ravi Sethi, Jeffrey D, Ullman, Compilers: Principles, Techniques and Tools. Addison Wesles, 1986.
* Steven Muchnick, Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997
* Reinhard, Wilhelm, Dieter Maurer, Compiler Design. Addison Wesley, 1995.
* Charles N. Fischer, Richard J. LeBlank, Jr., Crafting a Compiler in C. Benjamin/Cummings, 1991.
* Keith Cooper, Linda Torczon, Engineering a Compiler, Morgan Kaufmann
Additional Information
Course URL http://course.inf.ed.ac.uk/ct/
Graduate Attributes and Skills Not entered
KeywordsNot entered
Contacts
Course organiserMr Vijayanand Nagarajan
Tel: (0131 6)51 3440
Email: vijay.nagarajan@ed.ac.uk
Course secretaryMrs Victoria Swann
Tel: (0131 6)51 7607
Email: Vicky.Swann@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2014 The University of Edinburgh - 12 January 2015 4:11 am