# DEGREE REGULATIONS & PROGRAMMES OF STUDY 2014/2015 Archive for reference only THIS PAGE IS OUT OF DATE

 University Homepage DRPS Homepage DRPS Search DRPS Contact
DRPS : Course Catalogue : School of Mathematics : Mathematics

# Undergraduate Course: Introduction to Linear Algebra (MATH08057)

 School School of Mathematics College College of Science and Engineering Credit level (Normal year taken) SCQF Level 8 (Year 1 Undergraduate) Availability Available to all students SCQF Credits 20 ECTS Credits 10 Summary An introduction to linear algebra, mainly in R^n but concluding with an introduction to abstract vector spaces. The principal topics are vectors, systems of linear equations, matrices, eigenvalues and eigenvectors and orthogonality. The important notions of linear independence, span and bases are introduced. This course is preparation for the practical using of ideas around vectors, matrices and linearity and also lays the groundwork for a more abstract, pure-mathematical treatment of vector spaces. Students will also learn how to use Maple for some simple matrix operations. Course description This syllabus is for guidance purposes only : Essentially the contents of Poole Chapters 1 to Chapter 6.2, with a selection (not all) of the applications covered and selected topics omitted. The course will have four lecture-theatre-hours per week, with the understanding that one of those or equivalent pro rata is for Example Classes and other reinforcement activities. The figures in parentheses below are indicative only and refer to numbers of lecture-theatre hours. - Complex Numbers (Appendix C) (3) - Vectors and geometry (4) - Systems of linear equations, echelon form, Gaussian elimination, intro to span and linear independence. (6) - Matrices, multiplication, transpose, inverses, linear maps. Intro to subspaces and bases. Rank. (8) - Eigenvalues and eigenvectors. Determinants (6) - Orthogonality, Gram-Schmidt, orthogonal diagonalisation. (5) - Introduction to abstract vector spaces and subspaces. (4) - Selected applications (taught in sequence where appropriate) (4)
 Pre-requisites It is RECOMMENDED that students have passed Co-requisites Prohibited Combinations Students MUST NOT also be taking Mathematics for Science and Engineering 1a (MATH08060) OR Solving Equations (MATH08002) OR Applicable Mathematics 1 (MATH08027) OR Mathematics for Informatics 1a (MATH08046) OR Mathematics for Informatics 1b (MINF08001) Other requirements Higher Mathematics or A-level at Grade A, or equivalent
 Pre-requisites None
 Academic year 2014/15, Available to all students (SV1) Quota:  488 Course Start Semester 1 Timetable Timetable Learning and Teaching activities (Further Info) Total Hours: 200 ( Lecture Hours 40, Seminar/Tutorial Hours 10, Supervised Practical/Workshop/Studio Hours 10, Summative Assessment Hours 3, Revision Session Hours 4, Programme Level Learning and Teaching Hours 4, Directed Learning and Independent Learning Hours 129 ) Additional Information (Learning and Teaching) Students must pass exam and course overall. Assessment (Further Info) Written Exam 85 %, Coursework 15 %, Practical Exam 0 % Additional Information (Assessment) Coursework 15%, Examination 85% Feedback Not entered Exam Information Exam Diet Paper Name Hours & Minutes Main Exam Diet S1 (December) (MATH08057) Introduction to Linear Algebra 3:00 Resit Exam Diet (August) (MATH08057) Introduction to Linear Algebra 3:00
 - Facility in practical calculation with vectors and matrices in arbitrary dimensions - Geometrical understanding of vectors and vector operations in 2 and 3 dimensions - Thorough understanding of systems of linear equations and solution methods. - Understanding of and facility in calculation with eigenvalues and eigenvectors. - Understanding of orthogonality and projection in arbitrary dimensions. - Acquaintance with the idea of abstract vector spaces. - Ability to do matrix calculations with Maple.
 Students will be assumed to have acquired their personal copy of 'Linear Algebra, A Modern Introduction' by David Poole, 4th Int. Ed. 2011, Brooks Cole.
 Graduate Attributes and Skills Not entered Keywords ILA
 Course organiser Dr Toby Bailey Tel: (0131 6)50 5068 Email: t.n.bailey@ed.ac.uk Course secretary Ms Louise Durie Tel: (0131 6)50 5050 Email: L.Durie@ed.ac.uk
 Navigation Help & Information Home Introduction Glossary Search DPTs and Courses Regulations Regulations Degree Programmes Introduction Browse DPTs Courses Introduction Humanities and Social Science Science and Engineering Medicine and Veterinary Medicine Other Information Combined Course Timetable Prospectuses Important Information
© Copyright 2014 The University of Edinburgh - 12 January 2015 4:21 am