Archive for reference only

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Physics and Astronomy : Undergraduate (School of Physics and Astronomy)

Undergraduate Course: Electromagnetism (PHYS09060)

Course Outline
SchoolSchool of Physics and Astronomy CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 9 (Year 3 Undergraduate) AvailabilityAvailable to all students
SCQF Credits20 ECTS Credits10
SummaryThis is a two-semester course, the first covering time-independent and time-dependent properties of electric and magnetic fields leading to the vector calculus formulation of Maxwell's Equations and the derivation of electro-magnetic waves in vacuo and in media. The second semester covers the electromagnetic properties of waves including propagation, polarisation, interference and diffraction with example from radio wave, optics and x-ray diffraction.
Course description Electromagnetism (20 lectures)
- Integral and differential forms of Gauss's Law. Examples of 1D, 2D, 3D charge distributions.
- Potential. Poisson's Equation. Calculation of electric fields.
- Uniqueness theorem. Solution of electrostatic problems. Method of images.
- Dipole field. Quadrupole field. Multipole expansion.
- Electrostatic boundaries. Polarisation in dielectrics. Surface charges.
- Biot-Savart Law. Magnetic vector potential. Calculation of magnetic fields.
- Integral and differential forms of Ampere's Law. Examples of 1D, 2D current distributions.
- Magnetostatic boundaries. Magnetisation. Surface currents.
- Time-varying fields. Faraday's Law. Induction.
- Calculation of self and mutual inductance.
- Displacement current. Maxwell's equations and their solution in vacuo.
- Introduction to Electromagnetic waves.
- Solution of Maxwell's equations in dielectrics.
- Continuity theorem. Conservation laws.
- Poynting vector. Energy storage & transport by waves.

Electromagnetic Waves & Optics (20 lectures)
- Reflection & transmission of waves at boundaries.
- Polarisation states. Polarisers. Malus's Law. Measurement of polarisation.
- Derivation of Fresnel Equations. Brewster's angle.
- Interference. Double slits. Newton's rings. Michelson/Twyman-Green interferometers.
- Multi-beam interference. Fabry-Perot. Anti-reflection coatings. Dielectric stacks.
- Single slit diffraction. Diffraction grating. Applications in spectroscopy. X-ray diffraction.
- Diffraction from circular aperture. Resolution limit. Aberrations.
- Dispersion of Electromagnetic waves. Ionosphere.
- Waves in conductors. Absorption. Skin depth.
- Waveguides & Cavities.
- Coherence. Lasers.
- Basic Fourier optics. Optical transfer function. Concept of spatial frequency.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Dynamics and Vector Calculus (PHYS08043)
Prohibited Combinations Students MUST NOT also be taking Electromagnetism and Relativity (PHYS10093)
Other requirements None
Additional Costs None
Information for Visiting Students