Undergraduate Course: Quantum Physics (PHYS10043)
Course Outline
School  School of Physics and Astronomy 
College  College of Science and Engineering 
Credit level (Normal year taken)  SCQF Level 10 (Year 4 Undergraduate) 
Availability  Available to all students 
SCQF Credits  10 
ECTS Credits  5 
Summary  In this course we study techniques used in the practical applications of quantum mechanics. We begin with a review of the basic ideas of quantum mechanics, including various representations, and fundamental symmetries including bosons and fermions. We then develop timeindependent perturbation theory and consider its extension to degenerate systems. The variational principle is introduced, and extended to find selfconsistent states of identical particles and the HellmannFeynman theorem relating classical and quantum forces. We then study timedependent perturbation theory, obtain Fermi's Golden Rule, and look at radiative transitions and selection rules. We will also examine twoparticle states, Bell's theorem and entanglement. Subsequently we study scattering in the Born Approximation. 
Course description 
* Nondegenerate Perturbation Theory
* Degenerate Perturbation Theory
* Time dependent perturbations. Fermi Golden Rule
* Two state system. Neutrinos and kaons
* Variational Principle
* Covalent bond, H_2+ ion
* Identical particles, exchange interaction
* Density functional theory
* Scattering, Born approximation
* Scattering, Partial waves
* Relativistic QM, Dirac equation in brief
* Entanglement, Bell's theorem

Information for Visiting Students
Prerequisites  None 
Course Delivery Information

Academic year 2014/15, Available to all students (SV1)

Quota: None 
Course Start 
Semester 2 
Timetable 
Timetable 
Learning and Teaching activities (Further Info) 
Total Hours:
100
(
Lecture Hours 22,
Supervised Practical/Workshop/Studio Hours 20,
Summative Assessment Hours 2,
Revision Session Hours 4,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
50 )

Assessment (Further Info) 
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %

Additional Information (Assessment) 
Degree Examination, 100%
Visiting Student Variant Assessment
Degree Examination, 100% 
Feedback 
Not entered 
Exam Information 
Exam Diet 
Paper Name 
Hours & Minutes 

Main Exam Diet S2 (April/May)  Quantum Physics  2:00  
Learning Outcomes
On completion of this course, the student will be able to:
 Upon successful completion of this course it is intended that a student will be able to:
1)state and explain the basic postulates of quantum mechanics
2)understand the ideas of compatible and incompatible observables and explain the concept of good quantum numbers
3)define and apply matrix representations of spin operators
4)derive the effects of a timeindependent perturbation on the energy eigenvalues and eigenfunctions of a quantum system and apply the results to a range of physical problems
5)discuss the fine structure of Hydrogen
6)explain the RayleighRitz variational method and demonstrate its use for bounding the energy of various systems
7)understand the concept of a transition probability and apply perturbation theory to timedependent problems
8)discuss the interaction of radiation with quantum systems and explain the concept of selection rules
9) describe two particle interactions of bosons and fermions, explain the Born approximation and bound states for simple central potentials.
10) understand the EinsteinPodulskyRosen "paradox" and the concept of nonlocality.

Contacts
Course organiser  Prof Arjun Berera
Tel: (0131 6)50 5246
Email: ab@ph.ed.ac.uk 
Course secretary  Miss Paula Wilkie
Tel: (0131) 668 8403
Email: Paula.Wilkie@ed.ac.uk 

