THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2014/2015
Archive for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Physics and Astronomy : Undergraduate (School of Physics and Astronomy)

Undergraduate Course: Lasers and Applications (PHYS11044)

Course Outline
SchoolSchool of Physics and Astronomy CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Year 4 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryLasers are now commonplace throughout many aspects of everyday life, e.g. in CD players, telecoms, industrial processing, spectroscopy and many bioscience applications. The course starts with a review of the basic physics of optical cavities and the spontaneous/stimulated emission from materials leading to laser amplifiers and oscillators. Examples of atomic, ionic and molecular gas lasers are presented including systems for continuous wave and pulsed beam operation. The optical properties of laser cavities, and the optics of Gaussian beam are discussed. The final component of this course is a short review article on laser applications.
Course description The topics covered in this course are:

1) Introduction: how light is generated, outline and need for the laser, scope of course.

2) Interaction of EM Radiation with Matter: two-level system, spectral line-shapes, finite lifetime, Doppler effects, absorption and decay processes, spontaneous and stimulated emission.

3) Amplification Criteria: amplification conditions, Lorentzian line-shapes, Gaussian line-shapes, simple cavity model.

4) Fabry-Perot cavity: optics of Fabry-Perot cavity, laser use of Fabry-Perot, laser gain conditions, laser modes, homogeneous broadening, inhomogeneous broadening, control of modes, examples of lasers.

5) Four level laser: four level rate equations, four level gain profile, simple homogeneous laser, output behaviour and power, optimal output conditions, inhomogeneous laser.

6) Laser Modes and Mode Locking: properties of a single mode, multi-mode laser, two-mode system, mode locking in multi-mode laser, mode locking of real laser, active mode locking, passive mode locking, the Kerr lens.

7) Gas Lasers: operation and characteristics of the He-Ne laser, argon and krypton ion lasers and the carbon-dioxide lasers. Summary of other gas lasers.

8) Solid State Lasers: laser media, the ruby laser and Q-switching, titanium sapphire laser, neodymium YAG and glass lasers, visible solid state lasers, other rare earth lasers, summary of other laser types.

9) Cavity Stability: matrix optics ray methods, matrix model of optical cavity, laser stability conditions, practical laser cavities.

10) Gaussian Beams: scalar potentials, plane wave solution in optical cavity, Gaussian solution, divergence angle and beam parameters, beam waist and Rayleigh region, Gaussian beams in cavities, higher order modes, transformation of Gaussian beams, ABCD law, basic optics of Gaussian beams.

11) Applications Review: individual review contributing to 15% of the course marks with each person reviewing a different application.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Quantum Mechanics (PHYS09053) AND Thermal Physics (PHYS09061) AND Fourier Analysis and Statistics (PHYS09055)
Co-requisites It is RECOMMENDED that students also take Atomic and Molecular Physics (PHYS10026)
Prohibited Combinations Other requirements At least 80 points accrued in courses of SCQF level 9 or 10 drawn from Schedule Q.
Information for Visiting Students
Pre-requisitesNone
Course Delivery Information
Academic year 2014/15, Available to all students (SV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 18, Supervised Practical/Workshop/Studio Hours 9, Summative Assessment Hours 8, Revision Session Hours 4, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 59 )
Assessment (Further Info) Written Exam 85 %, Coursework 15 %, Practical Exam 0 %
Additional Information (Assessment) Degree Examination, 85%
Short review on laser applications: 15%
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)Lasers and Applications2:00
Learning Outcomes
On completion of this course a student should be able to demonstrate understanding of and be able to solve problems on:
1) absorption and spontaneous and stimulated emission in two level system, the effects of homogeneous and inhomogeneous line broadening, and the conditions for laser amplification,
2) operations of the Fabry-Perot cavity including mode separation and line-widths, laser gain conditions, gain clamping in both homogeneous and inhomogeneous line broadened media,
3) the four-level laser system, the simple homogeneous laser and its output behaviour and optimal operating conditions,
4) spectral properties of a single longitudinal mode, mode locked laser operation, schemes for active and passive mode locking in real laser system,
5) operations and basic properties of the most common laser types, He-Ne, Argon-ion, and carbon-dioxide, ruby, titanium sapphire, neodymium YAG and glass, knowledge of other main laser types,
6) matrix optics of the laser cavity and stability conditions,
7) basics of Gaussian beam in laser cavity and optical properties of laser output, design of stable laser cavities using Gaussian beam optics, the ABCD law for Gaussian beams.

In addition each student will undertake a review article on a particular laser application.
Reading List
S Hooker & C Webb, Laser Physics, OUP, 2010.
Murray Library (QC688 Hoo)

G Brooker, Modern Classical Optics, OUP, 2003.
Murray Library (QC395.2 Bro)
Additional Information
Graduate Attributes and Skills The following transferable skills are developed:

a) Independent review of applications from the current literature.

b) Preparation of a review article aimed at a non-specialist scientific audience.

c) Oral discussion in Workshop sessions.
KeywordsLaser
Contacts
Course organiserDr Paul Clegg
Tel: (0131 6)50 5295
Email: pclegg@ph.ed.ac.uk
Course secretaryMs Rebecca Thomas
Tel: (0131 6)50 7218
Email: R.Thomas@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2014 The University of Edinburgh - 12 January 2015 4:40 am