THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2014/2015
Archive for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Physics and Astronomy : Undergraduate (School of Physics and Astronomy)

Undergraduate Course: Modern Quantum Field Theory (PHYS11047)

Course Outline
SchoolSchool of Physics and Astronomy CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Year 4 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThe course introduces path integral methods in quantum field theory. This modern approach (as opposed to canonical quantisation) allows the relatively simple quantisation of gauge theories and forms an essential tool for the understanding and development of the 'standard model' of particle physics. Topics include: Path integral formalism, Feynman rules, LSZ formalism, loop diagrams and divergencies, regularisation and renormalisation, gauge theories, running coupling constant.
Course description - Path Integrals for quantum mechanics and quantum field theory, Green's functions and generating functionals for free scalar fields
- Interacting scalar fields, Feynman rules/diagrams, connected and one-particle-irreducible Green's functions
- Path integrals for fermions, Grassmann variables, Yukawa interactions
- Spectral functions, in/out states, reduction formulae (LSZ formalism), S-matrix
- One loop Feynman diagrams for scalar theories, divergencies, dimensional regularisation, renormalisation, renormalisation group, beta- and gamma- functions, Landau poles, infra red and ultra-violet fixed points
- Path integrals for gauge theories, gauge fixing, Faddeev-Popov factors, Feynman rules, renormalisation, renormalisation group, beta-function and asymptotic freedom (running coupling constant)
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Relativistic Quantum Field Theory (PHYS11021)
It is RECOMMENDED that students have passed Quantum Theory (PHYS11019)
Co-requisites
Prohibited Combinations Other requirements None
Information for Visiting Students
Pre-requisitesNone
Course Delivery Information
Academic year 2014/15, Available to all students (SV1) Quota:  None
Course Start Semester 2
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 22, Seminar/Tutorial Hours 22, Summative Assessment Hours 2, Revision Session Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 50 )
Assessment (Further Info) Written Exam 80 %, Coursework 20 %, Practical Exam 0 %
Additional Information (Assessment) 80% Degree Examination
20% Coursework
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)Modern Quantum Field Theory2:00
Learning Outcomes
Upon successful completion of this course it is intended that a student will be able to:
1) understand the notion of a path integral in quantum mechanics and field theory;
2) be familar with Grassmann numbers and their use for fermions in path integrals;
3) understand the connection between the path integral formalism and the operator (scattering) formalism;
4) understand perturbation theory and appreciate Feynmann rules and diagrams from the path integral viewpoint;
5) be familar with the problem of divergencies in quantum field theories and the renormalisation method;
6) appreciate the beauty of asymptotic freedom of the running coupling constant in non-abelian gauge theories leading to a theory of strong interactions - QCD;
7) to be able to apply what has been learnt in the course to solving simple problems in quantum field theory.
Reading List
None
Additional Information
Course URL http://www2.ph.ed.ac.uk/~egardi/MQFT/
Graduate Attributes and Skills Not entered
KeywordsMQFT
Contacts
Course organiserDr Einan Gardi
Tel: (0131 6)50 6469
Email: Einan.Gardi@ed.ac.uk
Course secretary Yuhua Lei
Tel: (0131 6) 517067
Email: yuhua.lei@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2014 The University of Edinburgh - 12 January 2015 4:40 am