Archive for reference only

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : School (School of Engineering)

Undergraduate Course: Engineering 1 (SCEE08001)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 8 (Year 1 Undergraduate) AvailabilityAvailable to all students
SCQF Credits20 ECTS Credits10
SummaryAn introduction to the engineering profession, including aspects of Chemical, Civil, Electrical and Mechanical Engineering. This course will demonstrate, through lectures and case studies, how Engineers with different specialist background can each contribute to the solution of complex engineering problems.
Course description Lecture Content

Chemical Engineering

This course gives an introduction to Chemical Engineering. Its basic principles are described through the story of its origins, and the versatility of application of these principles is discussed. Relevant examples are used to illustrate the role of chemical engineering in the modern world by addressing the technical, economic and environmental issues. In parallel, the basic tools of chemical engineering: (mass balances; units and conversions; estimation; the use of experimental data; and technical communication) are introduced to give students a skill set on which to base later years' study.

Civil Engineering

This part of the course provides a brief overview of civil and environmental engineering, followed by an introduction to the field of structural engineering. In structural engineering, the philosophy of design against extreme events and the requirements of structural design are outlined. Much of the course is concerned with failure and collapse of structures, using the concepts of both strength and energy absorption. The results are applied to design calculations for real world structures.

Electrical Engineering

This lecture series aims to put the electrical and electronic engineering course into the context of our everyday lives. The lectures will consist of 3 themes: Renewable Energy; Bioelectronics, sensors & actuators; and sound and audio processing, all of which are chosen because they are hot topics in engineering. In each theme the lecturer will introduce you to the bigger picture and show how each theme plays a significant role in our everyday lives. You will also be shown how to apply fundamental theory relevant to each theme.

Mechanical Engineering

The Mechanical Engineering component of the course is intended to equip students with the basics for solving fundamental, yet practically useful, problems in engineering mechanics. Newton¿s Laws are examined so that the concepts of force and acceleration are clear and applicable to a variety of different problem scenarios. Frictional effects are then introduced so that straight-line motion problems involving vehicles can be solved. The 'resolution of forces' procedure is also taught so that aeroplane, projectile motion and inclined plane problems can be solved. The mechanics of circular motion is dealt with and provides the necessary understanding for solving vehicle problems. In addition to the force based work the course also introduces important ideas on energy and momentum methods for the analysis of many problems. Finally the course concludes with material on elementary fluid mechanics, concentrating primarily on developing an understanding of the basics of incompressible fluid behaviour. All principal topics are supported by a comprehensive tutorial programme.


Tutorials run in three week blocks: weeks 3-5, weeks 6-8, and weeks 9-11. Each student will sign up in advance on Learn for tutorials for two disciplines only. Each student will atend a total of six tutorials over the course.

It is worth pointing out that the value you get out of a tutorial corresponds to the effort that you put into it. As question sheets are issued in advance, do attempt at least some of the questions before the tutorial so that you can identify any difficulties that you may have.


There are three workshops that will run in three week blocks (same as tutorials) and attendance is compulsory. Each student will sign up for three workshops on Learn. Students are required to submit individual material in advance of workshops 1 and 2, as specified on Learn. A group submission is required for workshop 3.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements SCE H-grade Mathematics or equivalent.
Information for Visiting Students
Pre-requisitesMathematics to a standard equivalent to SCE H-grade.
Course Delivery Information
Academic year 2014/15, Available to all students (SV1) Quota:  410
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 200 ( Lecture Hours 30, Seminar/Tutorial Hours 6, Supervised Practical/Workshop/Studio Hours 9, Formative Assessment Hours 1, Summative Assessment Hours 8, Programme Level Learning and Teaching Hours 4, Directed Learning and Independent Learning Hours 142 )
Assessment (Further Info) Written Exam 70 %, Coursework 30 %, Practical Exam 0 %
Additional Information (Assessment) 30% of total coursework mark + 70% of total Degree Examination mark
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)Engineering 12:00
Resit Exam Diet (August)2:00
Learning Outcomes
The course aims to illustrate the distinctive approach, and contribution to solution-finding, of each of the four major branches of Engineering; to provide an introduction to, and an overview of University degree programmes in Engineering; and to guide and inform the student's choice of an Engineering degree and career.

By the end of the course a student will be able to:

1. Explain technical material from two of the four Engineering Disciplines listed above.

2.Solve problems using deductive reasoning and numerical manipulation in two of the four Engineering Disciplines listed above.

3.Be able to discuss, and reason about, sustainability issues pertaining to Engineering.

4.Research information using Library and Internet resources.

5.Work in a team to communicate information that has been researched.

6.Write a detailed report to communicate the issues surrounding a sustainability theme.
Reading List
Additional Information
Graduate Attributes and Skills Not entered
Additional Class Delivery Information Lecture subjects are timetabled at 10am: Monday - Mechanical
Engineering, Tuesday - Sustainability seminar series (mandatory),
Wednesday - Chemical Engineering, Thursday - Civil Engineering, Friday -
Electronics. Choose at least 2 disciplines.
KeywordsChemical Engineering,Civil Engineering,Electrical Engineering,Mechanical Engineering,Sustainability
Course organiserDr Luke Bisby
Course secretaryMiss Lucy Davie
Tel: (0131 6)50 5687
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information
© Copyright 2014 The University of Edinburgh - 12 January 2015 4:44 am