THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2014/2015
- ARCHIVE as at 1 September 2014

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Biomedical Sciences : Biomedical Sciences

Undergraduate Course: Microorganisms, Infection and Immunity 2 (BIME08012)

Course Outline
SchoolSchool of Biomedical Sciences CollegeCollege of Medicine and Veterinary Medicine
Course typeStandard AvailabilityAvailable to all students
Credit level (Normal year taken)SCQF Level 8 (Year 2 Undergraduate) Credits20
Home subject areaBiomedical Sciences Other subject areaNone
Course website None Taught in Gaelic?No
Course descriptionThe aim of this course is to provide students with a foundation in:

1) The biology of infectious microorganisms
2) How microorganisms infect and interact with their hosts, and how this relates to their biology.
3) How the immune system fights infection and how disease can result when it fails.

The goal of this course design is to integrate micro-organism biology, infection biology, and immunology into one continuous lecture stream rather than having separate blocks of lectures for each. The idea is to provide the fundamentals for all three aspects early on so all three can be applied and discussed together throughout the course. We aim to use 1 or 2 pathogen examples that will be used throughout the course, and that can be used to tie together different lectures.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Additional Costs None
Information for Visiting Students
Pre-requisitesNone
Displayed in Visiting Students Prospectus?No
Course Delivery Information
Delivery period: 2014/15 Semester 2, Available to all students (SV1) Learn enabled:  Yes Quota:  None
Web Timetable Web Timetable
Course Start Date 12/01/2015
Breakdown of Learning and Teaching activities (Further Info) Total Hours: 200 ( Lecture Hours 30, Seminar/Tutorial Hours 5, Supervised Practical/Workshop/Studio Hours 10, Programme Level Learning and Teaching Hours 4, Directed Learning and Independent Learning Hours 151 )
Additional Notes
Breakdown of Assessment Methods (Further Info) Written Exam 60 %, Coursework 40 %, Practical Exam 0 %
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)2:00
Learning Outcomes
On completion of this course, the student will be able to:
1. A fundamental understanding of microorganism biology, infection and the immune system
2. The ability to read and interpret scientific papers
3. Data interpretation
Assessment Information
40% in course assessment: 50% of which will be linked to the practicals and involve analysis and interpretation of results and 50% will be based on literature comprehension/data interpretation

60% Exam: short answer questions and multiple choice questions
Special Arrangements
None
Additional Information
Academic description The course will consist of 30 lectures, 10 hours of practicals, and 5 tutorials. The practicals will cover sources of infection and culture of micro-organisms, diagnoses of infection and pathology, sterilization and disinfection. The course will develop graduate attributes linked to understanding the scientific literature by continuing with the literature comprehension tutorial that are currently delivered in MCI2. The subject matter of these tutorials will complement the lecture material.

Formative assessment will be given in the form of a series of timed release questions that re-emphasize the main lecture points, and help the students use and apply the lecture material. Formative assessment will also be used to strengthen links between different aspects of the course.
Syllabus Section 1) Introduction to Infection and Immunology

The challenge of micro-organisms: Infectious diseases
Summary of the major groups of microorganisms with a medical focus. Challenge dose, infective dose, tissue tropism. Transmission and virulence.

Immune system overview ¿ how do we deal with infection?
Anatomy of the immune system. Physical barriers. Innate cells. Adaptive immune cells. Memory. Development of immune cells

Co-evolution of pathogens and immunity
How infection drives the immune system, and in turn how the immune system impacts pathogens and infection strategies.

Section 2) Diversity and fundamental biology of infectious micro-organisms

The idea for this section is to emphasize the diversity and give the fundamentals of pathogen structures/properties.

Diversity and structure of bacteria.
Classification ¿ gram+/-, Intracellular components. Cell wall. Membranes. Periplasm and external structures e.g. Flagella, pili, exopolysaccharides, capsules, outer membrane vesicles and endospores.

Diversity and biology of viruses
Classification, structure, genomic organisation and genetic content, basic Lifecycle

Parasitic and fungal infections

Section 3) How the host combats pathogen diversity and uses the fundamental biology of pathogens to detect and respond to infection

Sensing micro-organisms: Innate cells
Challenge: how do you detect a wide range of different organisms as discussed above?
Answer: Use conserved molecules as discussed above in biology of bacteria/viruses/parasites.

PRRS, PAMPS, Complement, Cytokines ¿ inflammation, cell recruitment ¿ warning molecules. Introduction to innate cells.

Sensing micro-organisms: Adaptive immunity
Challenge: How do you recognize specific pathogens/strains when there are so many?
Answer: System of TCR and BCR and MHC.
T and B cells. Antigens and presentation. Self vs non-self. TCR and BCR. Clonal expansion. Memory. T cell help. T cell cytotoxicity. Structure and function of Ab

Section 4) The biology of infection

Bacterial processes for survival and expansion
Growth, replication, metabolism, genetics, transposable elements.

Viral processes for survival and expansion
Viral replication, genetics, latency, apoptosis, transformation

Section 5) How the immune system controls infection

Killing pathogens 1: Extra-cellular
Macrophages, Complement, Ab ¿ neutralising toxins, phagocytosis etc.., ADCC

Killing pathogens 2: Intra-cellular
CD8 cytotoxicity, NK cells, Ab ¿ blockade of entry, Latency (how immune response can affect latency)

The mucosal immune system and commensal pathogens
Discriminating pathogens from food (intro to tolerance). Food allergies. Commensals ¿ colonization resistance

Immune Evasion

Section 6) The consequences of failing to control infection
Inflammation and pathogenesis

Bacterial Pathogensis
Colonisation/adhesion, growth, immune evasion. Virulence determinants and regulation. Secretion systems and toxins.

Viral Pathogenesis

Section 7) Therapeutic control of infection and immune therapies

Vaccination
Discovery of vaccination, Active and passive immunisation, Types of vaccine, Adjuvants

Control of bacteria
Antibiotics and resistance.

Control of Viruses

Immune therapies and uses of Ab
mAb, Antibody techniques. In vivo Ab therapies - tumours/ anti-TNF therapies.
Transferable skills Not entered
Reading list Not entered
Study Abroad Not entered
Study Pattern Not entered
KeywordsNot entered
Contacts
Course organiserDr Matthew Taylor
Tel: (0131 6)51 3625
Email: Matthew.Taylor@ed.ac.uk
Course secretaryMs Tracy Noden
Tel: (0131 6)50 3717
Email: Tracy.Noden@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2014 The University of Edinburgh - 29 August 2014 3:30 am