- ARCHIVE as at 1 September 2014

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Physics and Astronomy : Undergraduate (School of Physics and Astronomy)

Undergraduate Course: Statistical Mechanics (PHYS09019)

Course Outline
SchoolSchool of Physics and Astronomy CollegeCollege of Science and Engineering
Course typeStandard AvailabilityAvailable to all students
Credit level (Normal year taken)SCQF Level 9 (Year 3 Undergraduate) Credits10
Home subject areaUndergraduate (School of Physics and Astronomy) Other subject areaNone
Course website None Taught in Gaelic?No
Course descriptionThis course provides an introduction to the microscopic formulation of thermal physics, generally known as statistical mechanics. We explore the general principles, from which emerge an understanding of the microscopic significance of entropy and temperature. We develop the machinery needed to form a practical tool linking microscopic models of many-particle systems with measurable quantities. We consider a range of applications to simple models of crystalline solids, classical gases, quantum gases and blackbody radiation.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Classical and Modern Physics (PHYS08044) OR Modern Physics (PHYS08045)
Students MUST have passed: Dynamics (PHYS08040) OR Dynamics and Vector Calculus (PHYS08043)
Prohibited Combinations Students MUST NOT also be taking Thermal Physics (PHYS09061) OR Thermodynamics (PHYS09021)
Other requirements None
Additional Costs None
Information for Visiting Students
Displayed in Visiting Students Prospectus?No
Course Delivery Information
Delivery period: 2014/15 Semester 2, Available to all students (SV1) Learn enabled:  No Quota:  None
Web Timetable Web Timetable
Class Delivery Information Workshop/tutorial sessions, as arranged.
Course Start Date 12/01/2015
Breakdown of Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 22, Supervised Practical/Workshop/Studio Hours 20, Summative Assessment Hours 8, Revision Session Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 46 )
Additional Notes
Breakdown of Assessment Methods (Further Info) Written Exam 80 %, Coursework 20 %, Practical Exam 0 %
No Exam Information
Summary of Intended Learning Outcomes
On completion of this course a student should be able to:
1)define and discuss the concepts of microstate and macrostate of a model system
2)define and discuss the concepts and roles of entropy and free energy from the view point of statistical mechanics
3)define and discuss the Boltdsmann distribution and the role of the partition function
4)apply the machinery of statistical mechanics to the calculation of macroscopic properties resulting from microscopic models of magnetic and crystalline systems
5)discuss the concept and role of indistinguishability in the theory of gases; know the results expected from classical considerations and when these should be recovered
6)define the Fermi-Dirac and Bose-Einstein distributions; state where they are applicable; understand how they differ and show when they reduce to the Boltsman
7)apply the Fermi-Dirac distribution to the calculation of thermal properties of elctrons in metals
8)apply the Bose-Einstein distribution to the calculation of properties of black body radiation
Assessment Information
Coursework, 20%
Degree Examination, 80%
Special Arrangements
Additional Information
Academic description Not entered
Syllabus - Statistical description of many-body systems; formulation as a probability distribution over microstates; central limit theorem and macrostates.
- Statistical mechanical formulation of entropy.
- Minimisation of the free energy to find equilibrium.
- Derivation of the Boltzmann distribution from principle of equal a priori probabilities in extended system.
- Determination of free energy and macroscopic quantities from partition function; applications to simple systems (paramagnet, ideal gas, etc).
- Multi-particle systems: distinguishable and indistinguishable particles in a classical treatment; Entropy of mixing and the Gibbs paradox.
- Fermi-Dirac distribution; application to thermal properties of electrons in metals.
- Bose-Einstein distribution; application to the properties of black body radiation; Bose-Einstein condensation.
- Introduction to phase transitions and spontaneous ordering from a statistical mechanical viewpoint: illustration of complexity arising from interactions; simple-minded mean-field treatment of an interacting system (e.g., van der Waals gas, Ising model); general formalism in terms of Landau free energy.
- Introduction to stochastic dynamics: need for a stochastic formulation of dynamics; principle of detailed balance; relaxation to equilibrium; application to Monte Carlo simulation; Langevin equation and random walks.
Transferable skills Not entered
Reading list Not entered
Study Abroad Not entered
Study Pattern Not entered
Course organiserDr Alexander Morozov
Tel: (0131 6)50 5289
Course secretaryMrs Bonnie Macmillan
Tel: (0131 6)50 5905
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information
© Copyright 2014 The University of Edinburgh - 29 August 2014 4:37 am