- ARCHIVE as at 1 September 2014

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Physics and Astronomy : Undergraduate (School of Physics and Astronomy)

Undergraduate Course: Biological Physics (PHYS11040)

Course Outline
SchoolSchool of Physics and Astronomy CollegeCollege of Science and Engineering
Course typeStandard AvailabilityAvailable to all students
Credit level (Normal year taken)SCQF Level 11 (Year 4 Undergraduate) Credits10
Home subject areaUndergraduate (School of Physics and Astronomy) Other subject areaNone
Course website None Taught in Gaelic?No
Course descriptionThere is an increased research effort in the school devoted to problems at the interface between biology and physics. There is also increasing recognition that physics can provide a very real - and very valuable - insight into the behaviour of complex biological systems, and that a physical approach to biological problems can provide a new way of looking at the world. This course will introduce the students to the basics of biological systems, and then provide examples of how familiar physical principles (thermodynamics, statistical mechanics) underlie complex biological phenomena.

This course will introduce you to the wonders of biology: the organisms, cells, and molecules that make up the living world. We will demonstrate the power of physical concepts to understand and make powerful predictions about biological systems, from the folding of a protein into a unique three-dimensional structure within a reasonable timeframe, through the motions of proteins to drive biological processes, to the locomotion of bacterial cells. The physical concepts will be substantially familiar, but their applications will be novel. Where possible, examples will be drawn from the recent scientific literature.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements At least 80 credit points accrued in courses of SCQF Level 9 or 10 drawn from Schedule Q.
Additional Costs None
Information for Visiting Students
Pre-requisitesSome knowledge of statistical thermodynamics is useful.
Displayed in Visiting Students Prospectus?Yes
Course Delivery Information
Delivery period: 2014/15 Semester 2, Available to all students (SV1) Learn enabled:  Yes Quota:  None
Web Timetable Web Timetable
Course Start Date 12/01/2015
Breakdown of Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 16, Supervised Practical/Workshop/Studio Hours 11, Summative Assessment Hours 3, Revision Session Hours 3, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 65 )
Additional Notes
Breakdown of Assessment Methods (Further Info) Written Exam 50 %, Coursework 50 %, Practical Exam 0 %
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)2:00
Summary of Intended Learning Outcomes
Upon successful completion of this course it is intended that a student will be able to:
1) Demonstrate an understanding of the structure of cells, and the major components within a cell
2) Recognise that biological systems are far from equilibrium
3) Discuss the importance of diffusion, random walks, entropy and self-assembly in biological systems
4) Discuss the importance of cooperativity in biology
5) Recognise the different approaches adopted in Biological and Physical research
Assessment Information
20% oral assignment
30% written assignment
50% Degree Examination
All components are mandatory to pass the course.
Special Arrangements
Additional Information
Academic description Not entered
Syllabus Not entered
Transferable skills Not entered
Reading list Not entered
Study Abroad Not entered
Study Pattern Not entered
Course organiserDr Simon Titmuss
Tel: (0131 6)50 5267
Course secretaryMs Dawn Hutcheon
Tel: (0131 6)50 7218
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information
© Copyright 2014 The University of Edinburgh - 29 August 2014 4:38 am