THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2014/2015
- ARCHIVE as at 1 September 2014

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Electronics

Undergraduate Course: Signals and Communication Systems 2 (SCEE08007)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Course typeStandard AvailabilityAvailable to all students
Credit level (Normal year taken)SCQF Level 8 (Year 2 Undergraduate) Credits10
Home subject areaElectronics Other subject areaNone
Course website None Taught in Gaelic?No
Course descriptionThis course aims to introduce students to the fundamentals of Signal Processing, Communication, and Information Theory. The course aims to provide an insight into time domain and frequency domain analysis of continuous-time signals, and provide an insight into the sampling process and properties of the resulting discrete-time signals. The course then introduces the students to basic communication modulation techniques, as well as probability theory for analysing random signals. At the end of the module students will have acquired sufficient expertise in these concepts to appreciate and analyse physical-layer communication signals.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Additional Costs Course text book
Information for Visiting Students
Pre-requisitesNone
Displayed in Visiting Students Prospectus?No
Course Delivery Information
Delivery period: 2014/15 Semester 2, Available to all students (SV1) Learn enabled:  Yes Quota:  None
Web Timetable Web Timetable
Course Start Date 12/01/2015
Breakdown of Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 20, Seminar/Tutorial Hours 18, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 60 )
Additional Notes
Breakdown of Assessment Methods (Further Info) Written Exam 100 %, Coursework 0 %, Practical Exam 0 %
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)1:30
Resit Exam Diet (August)1:30
Summary of Intended Learning Outcomes
By the end of the course, a student should be able to:
* distinguish between and give examples of deterministic and random, periodic and aperiodic, continuous-time and discrete-time signals;
* evaluate the trigonometric, complex Fourier Series, and Fourier transforms of simple waveforms, provide a physical interpretation for these transforms, and plot phase, magnitude, and line spectra;
* distinguish between energy and power signals, be able to perform the appropriate calculation for a given signal, and be able to apply Parseval's theorem;
* recall the convolution integral and its properties and evaluate the response of a simple linear system to a simple waveform using the integral and a graphical construction;
* recall the Nyquist sampling theorem and analyse the effect of sampling on the frequency content of a signal;
* describe various pulse modulation schemes and circuits for their generation and reception, including OOK, FSK, and PSK;
* explain frequency division and time-vision multiplexing, and analyse simple multiplexing communication systems;
* explain how communication signals can be modelled as a random process, and perform simple statistical and probabilistic analysis of simple communication schemes;
* demonstrate an ability of use MATLAB to analyse simple signals and communication systems.
Assessment Information
100% written examination.
Any student who does not attend and perform satisfactorily on the Signals and Communications 2 laboratory is deemed to have failed the course, as it tests competency regarding the use of MATLAB to analyse simple signals and communication systems.
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus 1. Course overview, and introduction to signals, systems, communications and the broader topic of signal processing (1 hour).
2. Nature of, and types of signals; definitions of continuous time, discrete time, periodic, aperiodic, deterministic and random. Introduction to phasors and concept of frequency of single tone, typical signals and signal classification, power and energy (2 hours).
3. Signal decompositions and concept of signal building blocks (1 hour)
4. Fourier Analysis, including trigonometric and complex Fourier series, Fourier transforms, Parseval's theorem, physical interpretations, and plotting spectra (3 hours).
5. Convolution, including the concept of an impulse and the impulse response of a linear system; the concept and application of convolution, and evaluating the convolution integral using graphical methods (3 hours)
6. Nyquist's Sampling Theorem and Discrete-Time Signals (including discrete-time convolution) (3 hours)
7. Introduction to communication theory and modulation techniques, including OOK, FSK, and PSK (2 hours)
8. Multiplexing techniques, including Frequency Division Multiplexing and Time Division Multiplexing (2 hours)
9. Basic Information theory and probability (3 hours).
Transferable skills Not entered
Reading list See lecture notes for full reading list.
Study Abroad Not entered
Study Pattern 2 lectures per week for 10 weeks, with staggered fortnightly tutorials, and five examples class on fortnightly basis. One three-hour MATLAB based laboratory.
KeywordsContinuous and discrete-time signal, Fourier analysis, Nyquist sampling theory, communication system
Contacts
Course organiserDr Pei-Jung Chung
Tel: (0131 6)50 5565
Email: P.Chung@ed.ac.uk
Course secretaryMiss Lucy Davie
Tel: (0131 6)50 5687
Email: Lucy.Davie@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2014 The University of Edinburgh - 29 August 2014 4:43 am