University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : Deanery of Biomedical Sciences : Biomedical Sciences

Undergraduate Course: Neural circuits for learning and memory (BIME10011)

Course Outline
SchoolDeanery of Biomedical Sciences CollegeCollege of Medicine and Veterinary Medicine
Credit level (Normal year taken)SCQF Level 10 (Year 4 Undergraduate) AvailabilityNot available to visiting students
SCQF Credits20 ECTS Credits10
SummaryThe course addresses circuit-based approaches to investigate neural mechanisms used for learning and memory. The course will focus on brain systems used for spatial and episodic memory. Other memory systems such as those used for motor learning will also be considered. Classic anatomical, electrophysiological and behavioural approaches will be explored alongside modern circuit-based techniques including optogenetics, chemical genetics and other genetically encoded sensors and circuit manipulations.
Course description Not entered
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Students MUST NOT also be taking Neurobiology of Cognition (BIME10010)
Other requirements None
Additional Costs None
Course Delivery Information
Academic year 2016/17, Not available to visiting students (SS1) Quota:  25
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 200 ( Lecture Hours 66, Programme Level Learning and Teaching Hours 4, Directed Learning and Independent Learning Hours 130 )
Assessment (Further Info) Written Exam 50 %, Coursework 50 %, Practical Exam 0 %
Additional Information (Assessment) 50% in-course team presentation and 50% seen essay exam
Feedback Students will receive feedback on a formative presentation and the subsequent feedback from the summative presentation. Additional feedback on the exam will be given in semester 2
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)Neural circuits for learning and memory2:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. Understand how specific circuits contribute to learning and memory
  2. Understand experimental approaches to investigating circuit mechanisms of brain function.
  3. Interpret original experimental data and discuss the significance of the findings.
  4. Demonstrate an ability to openly debate scientific issues.
  5. To work as a team to develop and present a project to address an important scientific question and yo apply understanding of circuit mechanisms and approaches to novel problems.
Reading List
General textbooks of neuroscience with sections on learning and memory:
Kandel ER, Schwartz JH, Jessel TM, Siegelbaum SA & Hudspeth AJ (2012) Principles of Neural Science, Elsevier, 5th Edition.

Squire LR, Berg D, Bloom FE, du Lac S, Ghosh A & Spitzer NC (2008) Fundamental Neuroscience, Academic Press, 4th Edition.

Purves D, Brannon EM, Cabeza R, Huettel SA, LaBar KS, Platt ML & Woldorff MG (2008) Principles of Cognitive Neuroscience, Sinauer, 1st Edition.

Specialized reviews of chemical and optical genetic techniques:
O'Connor et al (2009) Reverse engineering the mouse brain. Nature 461 (7266): 923-9

Luo et al (2008) Genetic dissection of neural circuits. Neuron 57 (5): 634-60

Fenno et al (2010) The development and application of optogenetics. Annual Review of Neuroscience 34(1), 389-412.

Kravitz, A. V., & Kreitzer, A. C. (2011) Optogenetic manipulation of neural circuitry in vivo. Current Opinion in Neurobiology 21(3), 433-9.

Packer, A.M., Roska, B., and Hausser, M. (2013) Targeting neurons and photons for optogenetics. Nat Neurosci 16, 805-815.

Specific Reading:
For each lecture, a list of articles will be provided. Most should be available as pdfs online via the University of Edinburgh library (electronic journals). You are encouraged to read these papers selectively. We recognize that we are providing more reading than you may have time for, but we do encourage you to select topics you are interested in and study them thoroughly.
Additional Information
Graduate Attributes and Skills Not entered
Special Arrangements None
Course organiserDr Emma Wood
Tel: (0131 6)50 3531
Course secretaryMs Sarah Larios
Tel: (0131 6)51 1514
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information
© Copyright 2016 The University of Edinburgh - 3 February 2017 3:25 am