University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Civil

Undergraduate Course: Membrane Science & Technology 5 (CIVE11030)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Year 5 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryMembrane Science & Technology 5 is a course that intends to demonstrate to students how nature works (biological membranes) and how such principles (membrane processes) can be used for medical, water & wastewater, processing and other industries by engineering appropriate materials and systems. The course hence leads from nature to material science and engineering, fundamental transport principles to applications and process design with immediate relevance to the water & wastewater treatment industry where membrane are becoming a predominant process choice worldwide.
The course material is innovative and gives the students a very good start in a leading edge career in a membrane technology area from medicine to wastewater engineering.
The variety of topics covered in the course brings together a number of approaches from biology, chemistry, mathematics, design software, water & wastewater engineering, sustainability, material science and is hence an ideal course to address numerous graduate attributes.
Course description Lectures: Titles & Content

L1&2 Introduction
L1 Course outline & assessment; reading; discussion of project requirements and tutorial structure.
L2 Introduction to general issues in membrane science & technology.
L3&4 Membrane Manufacturing
Biological Membranes, Membrane Polymer Manufacturing, Chemistry, Industrial Processes and Membrane Performance Implications, Guest Lecture Prof Howard Colquhoun, Chemistry, Reading University, UK
L5&6 Membrane Characterisation and Module Types
L5 Membrane characterisation
L6 Membrane module types
L7&8 Transport Mechanisms and Membrane Fouling
L7 Membrane principles and transport mechanisms
L8 Membrane fouling
L9&10 Pressure Driven Membrane Processes I
L9 Microfiltration principles and applications
L10 Ultrafiltration principles and applications
L11&12 Membrane Bioreactors
L11 Membrane bioreactor (MBR) principles and applications
L12 Industry performance of drinking water ultrafiltration and wastewater MBR Technology
L13&14 Electrodialysis
Electrodialysis Development, Principles, Electrochemistry, Industrial Applications and Membrane Performance Implications, Guest Lecture Prof Johannes Fritsch, Process Engineering, University of Applied Sciences Ravensburg-Weingarten, Germany

L15&16 Pressure Driven Membrane Processes II
L15 Nanofiltration & Reverse Osmosis
L16 Coupling Renewable Energy & Membrane Technology
L17&18 Applications and Processes
Class Test 3
L17 Other membrane applications
L18 Current research in membrane science & technology
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Information for Visiting Students
Course Delivery Information
Not being delivered
Learning Outcomes
At the conclusion of this subject students will be able to:
- Be familiar with main membrane processes, principles, separation mechanisms, and applications
- Appreciate the selection criteria for different membrane processes
- Describe the principle of the most common membrane applications
- Carry out a concept to design project for a particular membrane technology application.
Reading List
1. Mulder, Marcel, 1991, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, Netherlands.
2. Baker, R.W., Membrane technology and applications, 2nd ed., John Wiley 2004.
3. Schäfer, A., Fane, A.G., Waite, T.D. (2005) Nanofiltration ¿ Principles & Applications, Elsevier.
4. Ho, W.S. Winston, Sirkar, Kamalesh K. (Eds), 1992, Membrane Handbook, Chapman & Hall, New York, USA.
5. Hillis, Peter (Ed), 2000, Membrane Technology in Water and Wastewater Treatment, Royal Society of Chemistry, Cambridge, UK.
6. Schäfer, A.I., 2001, Natural Organics Removal using Membranes, Principles, Performance and Cost, CRC Press, USA.
7. Noble, Richard D., Stern, S. Alexander (Eds), 1995, Membrane Separations Technology - Principles and Applications, Elsevier.
8. Mallevialle, J., Odendaal, P.E., Wiesner, M.R., 1996, Water Treatment Membrane Processes, McGraw-Hill.
9. Judd, S. Jefferson, B. (2003) Membranes for Industrial Wastewater Recovery
Additional Information
Graduate Attributes and Skills Not entered
Additional Class Delivery Information Tutorial sessions to be arranged as necessary
KeywordsNot entered
Course organiser Course secretaryMr Craig Hovell
Tel: (0131 6)51 7080
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information