University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Geosciences : Earth Science

Undergraduate Course: Applied Hydrogeology and Near Surface Geophysics (EASC10101)

Course Outline
SchoolSchool of Geosciences CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 10 (Year 3 Undergraduate) AvailabilityAvailable to all students
SCQF Credits20 ECTS Credits10
SummaryStudents will gain a knowledge that covers and integrates most of the principal areas, features, boundaries, terminology and conventions of applied hydrogeology and the application of near surface geophysical techniques for the characterisation of the subsurface. They will gain an understanding of the principal theories, concepts and principles behind the development of conceptual hydrogeological models. They will cover a range of standard techniques for the investigation of hydrogeological parameters. They will be knowledgeable and skilled in the use of numerical data to solve issues in hydrogeology and near-surface geophysics.
In addition they will be able to use both analytical and graphical techniques to predict the movement of groundwater and containment transport, as well as be able to produce water and contaminant transport, as well as be able to produce water balances for catchment areas. Through group based case studies on real life problems, which the students will present the applicability of the subject area, its use and its limit are demonstrated. In addition as part of the assessment students are expected to complete a project on the distribution of groundwater in different hydrogeological environments, requiring a synoptic understanding of hardrock and surface geology, facies interpretation and material characteristics. Finally accompanying the lecture series reference is made to the uncertainty particularly of conceptual models and their applicability.
This course will also give students a flavour of geophysical techniques used to explore the shallow sub-surface, especially regarding contamination and pollution: the methods available, how surveys are conducted, how the data are processed and modelled, and the interpretation.
Teaching will proceed via lectures, tutorials, and group work based in the field. Through group-based studies on real-world problems, students will gain experience in the applicability of the subject area, and the limitations of techniques.
Course description The following topics will be covered:
Introduction to Applied Geoscience Foundations
Soil description for Applied Geoscience Purposes
Aquifer Investigation Techniques
Physical property contrasts
Electromagnetic methods, including EM34, VLF.
Resistivity, self-potential and induced polarisation/complex resistivity methods
Ground probing radar.
Seismic refraction.
Field data acquisition, processing and interpretation
Groundwater Flow
Groundwater Geochemistry
Case studies for Groundwater Issues
Modelling Groundwater Flow
Contaminant Transport
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Information for Visiting Students
High Demand Course? Yes
Course Delivery Information
Academic year 2017/18, Available to all students (SV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 200 ( Lecture Hours 10, Seminar/Tutorial Hours 20, Feedback/Feedforward Hours 3, Programme Level Learning and Teaching Hours 4, Directed Learning and Independent Learning Hours 163 )
Assessment (Further Info) Written Exam 60 %, Coursework 40 %, Practical Exam 0 %
Additional Information (Assessment) The assessments for this course are:
- 2 hour exam (60%) - date TBC
- Report on geophysical field work (30%)
- Report on a research theme related to hydrogeology selected by the student during the class (10%)

Assessment deadlines:
Report on research theme: 16/11/2017 (12noon)
Field Report: 01/12/2017 (12noon)
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)2:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. Understand the impact of geology on groundwater flow and distribution, describe a geological material according to its engineering relevant characteristics (BS5930)
  2. Understand the geochemistry and the classifications of groundwater, key hydraulic parameters such as permeability, hydraulic conductivity, and how they relate to the material and fluid parameters
  3. Understand the key concepts of contaminant transport (diffusion, dispersion, sorption, decay) and use analytical solutions to model groundwater flow and mass transport
  4. Able to apply near surface geophysical techniques for aquifer characterisation including application of Electromagnetic methods, including EM34, VLF, Resistivity, self-potential and induced polarisation/complex resistivity methods, magnetic techniques, gravity techniques and introduction to ground probing radar.
  5. Design geophysical surveys for subsurface investigation (e.g. profile spacing, sampling rate along profile). Field data acquisition, processing and interpretation.
Reading List
Freeze, R .A. and J.A. Cherry (1979): Groundwater.- Prentice-Hall, Englewood Cliffs
Fetter, C.W. (2001): Applied Hydrogeology.- Prentice Hall, Englewood Cliffs
Fetter, C.W. (1993): Contaminant Hydrogeology. - Macmillan Publishing Company, New York; S. 458
Reynolds, J M, An Introduction to Applied and Environmental Geophysics, Wiley-Blackwell
Additional Information
Graduate Attributes and Skills Not entered
Course organiserDr Chris Mcdermott
Course secretaryMiss Sarah Thomas
Tel: (0131 6)50 8510
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information