Undergraduate Course: Honours Algebra (MATH10069)
Course Outline
School  School of Mathematics 
College  College of Science and Engineering 
Credit level (Normal year taken)  SCQF Level 10 (Year 3 Undergraduate) 
Availability  Available to all students 
SCQF Credits  20 
ECTS Credits  10 
Summary  This is a core course for Honours Degrees involving Mathematics. It showcases the power of abstraction and brings together several different topics that you have already learned, in order to present a view on some of the more advanced algebra that is critical for later courses and also in application, as well as of interest in its own right.
There are 3 lectures a week as well as a workshop; there are also 2hour computer lab sessions in alternate weeks. 
Course description 
"One great power of mathematics is abstraction. Here abstraction is the distillation of a mathematical idea to its essence  in the case of linear algebra, understanding what unifies points, lines and planes, and so on. This turns out to be very useful. Why? Well two apparently different ideas can turn out to have the same underlying structure, and then insight you get from one can reveal the other.. Think of a dictionary, allowing you to translate the masterpieces of one language into another. [Of course, you still need to work hard to make a good translation.] Second, it is often easier to understand general structure than it is to understand specific examples. Many mathematicians think ""if you can't answer a particular question, generalise it  it might become easier!"". This course is about showcasing this, as well as giving you a solid base for more advanced topics in Year 4 and beyond. It also emphasises connections with other parts of mathematics, and will feature applications of the theory to problems, sometimes even beyond mathematics.
The syllabus first covers abstract vector spaces and linear transformations. It then introduces rings and modules, their quotients, and the first isomorphism theorem. The multilinear algebra of determinants is studied, together with eigenvectors and eigenvalues, culminating in the CayleyHamilton theorem and the Perron Frobenius Theorem. This is followed by an introduction to inner product spaces and the Spectral Theorem. The course then moves on to normal forms for linear transformations and particularly the Jordan Normal Form.
Throughout the course, we will also work with a computer algebra system (e.g. Maple) to learn about programming skills and data structures which are useful in Pure Mathematics and beyond. In lab sessions, we will use these skills to investigate topics that are relevant to the theory being developed in lectures and workshops. Students will also carry out a group project which will require some computer algebra work and a short group presentation.
Linear Algebra
1. Basic concepts in abstract linear algebra, abstract vector spaces, bases, linear maps, dimension, images and kernels.
2. Linear transformations, choice of basis, Smith normal form.
Rings and Modules
1. Basic definitions and examples of rings, homomorphisms, kernels, images.
2. Polynomials, their Euclidean algorithm, roots and algebraically closed fields.
3. Basic definitions and examples of modules, homomorphisms, kernels, images.
4. Quotient rings, modules and vector spaces; the first isomorphism theorem.
Determinants and Eigenvalues
1. Multilinear forms; characterisations of determinant.
2. Eigenvalues and eigenvectors; diagonalisable and triangularisable linear mappings; CayleyHamilton Theorem.
3. PerronFrobenius Theorem and applications.
Inner Product Spaces and Quadratic Forms
1. Basic definitions and examples of inner product spaces.
2. Orthogonal projection; GramSchmidt;
3. Adjoints of linear transformations; spectral theorem for finite dimensional inner product spaces.
Jordan Normal Form
1. The Jordan Normal Form.
2. Applications of the Jordan Normal Form.

Information for Visiting Students
Prerequisites  Visiting students are advised to check that they have studied the material covered in the syllabus of each prerequisite course before enrolling. 
High Demand Course? 
Yes 
Course Delivery Information

Academic year 2017/18, Available to all students (SV2)

Quota: None 
Course Start 
Semester 2 
Timetable 
Timetable 
Learning and Teaching activities (Further Info) 
Total Hours:
200
(
Lecture Hours 35,
Seminar/Tutorial Hours 10,
Supervised Practical/Workshop/Studio Hours 10,
Summative Assessment Hours 3,
Programme Level Learning and Teaching Hours 4,
Directed Learning and Independent Learning Hours
138 )

Assessment (Further Info) 
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %

Additional Information (Assessment) 
Coursework 20%, Examination 80%
Students must pass exam and course overall. 
Feedback 
Not entered 
Exam Information 
Exam Diet 
Paper Name 
Hours & Minutes 

Main Exam Diet S2 (April/May)  Honours Algebra (MATH10069)  3:00  
Learning Outcomes
On completion of this course, the student will be able to:
 Work/compute with the objects introduced in the class (abstract vector spaces, rings, modules), the notions associated to the maps (linear transformations/homomorphism) between them (kernel, images, determinants), constructions with them (quotients), and forms on vector spaces (inner products, quadratic forms).
 State and prove the results covered in the course, especially the first isomorphism theorem, properties of the determinant, properties of eigenvalues, the spectral theorem.
 Apply these results to examples that have not been covered in class and to calculate with the Jordan Canonical Form.
 Write and test short procedures to carry out calculations in abstract algebra using a computer algebra system.
 Work collaboratively to investigate an application of abstract algebra using a computer algebra system, and deliver a presentation on the topic to an audience of peers.

Additional Information
Graduate Attributes and Skills 
Not entered 
Keywords  HAlg 
Contacts
Course organiser  Prof Iain Gordon
Tel: (0131 6)50 5062
Email: i.gordon@ed.ac.uk 
Course secretary  Ms Hannah Burley
Tel: (0131 6)50 4885
Email: Hannah.Burley@ed.ac.uk 

