University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Mathematics : Mathematics

Undergraduate Course: Linear and Fourier Analysis (MATH10081)

Course Outline
SchoolSchool of Mathematics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 10 (Year 4 Undergraduate) AvailabilityAvailable to all students
SCQF Credits20 ECTS Credits10
SummaryIn this course, we will introduce students to techniques and tools in modern analysis which have important uses in a variety of areas of analysis, including the study of partial differential equations.

We will achieve this in the context of linear and fourier analysis, introducing normed linear, inner product spaces and their completions, Banach and Hilbert spaces. The structure and geometry of these spaces will be studied as well as bounded linear operators acting on them.

A rigorous treatment of Fourier series and related topics will be given.
Course description - Inner product spaces and normed spaces.
- Completeness and completions of spaces with concrete realisations of standard examples. Lp spaces, Holder and Minkowski inequalities.
- Geometric and metric properties of Hilbert spaces, including orthonormal bases and generalised Fourier series.
- Bounded linear functionals, operators and duality,
- Test functions and distributions.
- Fourier series, fourier coefficients, trigonometric polynomials and orthogonality.
- Properties of fourier coefficients; Bessel¿s inequality, Parseval¿s identity and the Riemann-Lebesgue lemma.
- Various notions of convergence of Fourier series, including pointwise, uniform and mean square convergence. Summability methods, convolution and Young¿s inequality..
- Fourier Analysis in broader contexts; for example, fourier integrals, fourier expansions in groups, Schwartz spaces and tempered distributions.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Honours Analysis (MATH10068)
Prohibited Combinations Students MUST NOT also be taking Linear Analysis (MATH10082) OR Fourier Analysis (MATH10051)
Other requirements Students might find it useful to have taken, or be taking, MATH10047 Essentials in Analysis and Probability.
Information for Visiting Students
High Demand Course? Yes
Course Delivery Information
Academic year 2017/18, Available to all students (SV1) Quota:  None
Course Start Full Year
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 200 ( Lecture Hours 44, Seminar/Tutorial Hours 10, Summative Assessment Hours 3, Programme Level Learning and Teaching Hours 4, Directed Learning and Independent Learning Hours 139 )
Assessment (Further Info) Written Exam 95 %, Coursework 5 %, Practical Exam 0 %
Additional Information (Assessment) Coursework 5%, Examination 95%
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)MATH10081 Linear and Fourier Analysis3:00
Learning Outcomes
1. Facility with the interplay between analysis, geometry and algebra in the setting of Banach and Hilbert spaces, both abstractly and in specific examples.
2. Ability to use orthogonality arguments in a variety of theoretical and concrete situations.
3. Capacity to work with the classes of normed linear spaces appearing in the course, particularly specific calculations around Hilbert spaces and operators acting on them.
4. Facility with Fourier series and their coefficients.
5. Ability to use the main ideas of Fourier Analysis, in both the proof of structural properties and in concrete situations.
6. Capacity to work with theoretical and concrete concepts related to Fourier series and their coefficients.
7. Be able to produce examples and counterexamples illustrating the mathematical concepts presented in the course.
8. Understand the statements and proofs of important theorems and be able to explain the key steps in proofs, sometimes with variation.
Reading List
1. An Introduction of Hilbert Space, by N. Young, Cambridge Mathematical Textbooks.
2. Introduction to Hilbert Space, by S. Berberian, Oxford University Press.
3. Fourier Analysis: An Introduction, by E.M. Stein and R. Shakarchi, Princeton University Press.
4. Fourier Series and Integrals, by H. Dym and H. McKean, Academic Press.
5. Fourier Analysis, by T.W. Korner, Cambridge University Press
Additional Information
Graduate Attributes and Skills Not entered
Course organiserProf Jim Wright
Tel: (0131 6)50 8570
Course secretaryMrs Alison Fairgrieve
Tel: (0131 6)50 5045
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information