THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2017/2018

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Social and Political Science : Postgrad (School of Social and Political Studies)

Postgraduate Course: Intermediate inferential statistics: testing and modelling (PGSP11321)

Course Outline
SchoolSchool of Social and Political Science CollegeCollege of Humanities and Social Science
Credit level (Normal year taken)SCQF Level 11 (Postgraduate) AvailabilityAvailable to all students
SCQF Credits20 ECTS Credits10
SummaryThe course is designed for those students who have already acquired a basic understanding of statistics; for example, through the Core Quantitative Data Analysis course run in the first semester. Its aim is to extend and deepen understanding of statistical approaches to data analysis through an appreciation of the process of statistical reasoning prior to designing appropriate quantitative analysis of data. Attention will be given to discrete probability distributions, including Normal approximations, as well as a range of parametric and nonparametric tests. Students will be shown techniques for data reduction and ways to explore the dimensionality in data for potential production of indexes. A number of approaches to regression under different conditions will be considered in depth. There will also be an introduction to longitudinal analysis.
Course description The course is designed for those students who have already acquired a basic understanding of statistics; for example, through the Core Quantitative Data Analysis course run in the first semester. Its aim is to extend and deepen understanding of statistical approaches to data analysis through an appreciation of the process of statistical reasoning prior to designing appropriate quantitative analysis of data. Attention will be given to discrete probability distributions, including Normal approximations, as well as a range of parametric and nonparametric tests. Two of the most common approaches to data reduction will be outlined. A number of approaches to regression under different conditions will be considered in depth. There will also be an introduction to longitudinal analysis.


Outline content

Section A - Theoretical considerations

1. Issues in quantitative research and statistical reasoning
Introduction to the course content; introductions by participants to their research interests and their interest in quantification; issues and criticisms of quantitative methods in knowledge creation; statistical reasoning; reliability and validity; estimation; hypothesis testing; significance, power, effect size and sample size; alternatives to significance testing.

2. Design of empirical quantitative investigations
Stages of a statistical investigation; exploration and confirmation; errors, outliers, leverage, and missing data; model fitting and residual analysis; causality; levels of measurement and analytical techniques; validity and reliability; guidelines for modelling, analysis and interpretation.


Section B - Probability, measurement and comparisons

3. Discrete probability distributions, inc. Normal approximations; continuity corrections and finite population corrections.

Uniform (rectangular), binomial and poisson distributions; Normal approximations to discrete distributions; continuity corrections and finite population correction factors.

4. Parametric and non-parametric tests

(a) 1 sample

Binomial, chi-square, Kolmogorov-Smirnov and t tests.

(b) »1 sample - related and independent

McNemar change, Sign, Wilcoxon signed-ranks, paired-samples t tests; Fisher's exact, chi square, Wicoxon-Mann-Whitney, independent t tests.

Multi-sample chi square, Kruskal-Wallis 1-way ANOVA

Section C - Data reduction

5. Principal components analysis / Factor analysis
Theories of data reduction; statistical assumptions; sampling adequacy; methods of extraction; axis rotation; graphical and statistical interpretation; factor scores; reliability.


Section D - Explanation and prediction

6. Multiple regression/ANOVA: assumptions and approaches
Linear models with more than two independent variables; purpose of multiple regression (explanation, prediction, controlling, etc); assumptions of linear regression; dummy variables; comparing models for two groups; interpreting the model; odds ratios and log odds. Parametric ANOVA and ANCOVA tests.


7. Logistic regression:

(a) Binary and multinomial

Testing models with a dichotomous dependent variable; logistic regression model formation; proportional odds model; assessing model fit; interpreting the model; issues in model selection.

(b) Ordinal

Testing models with an ordered dependent variable; categorical scoring approach; proportional odds model; assessing model fit; interpreting the model.

Section E - Longitudinal data

8. Event history analysis

This technique analyses longitudinal data where observations over time are truncated at particular points; e.g. crime-free time, highest age of education, or death.

Although the principal audience is designed to be social scientists, the course is open to students with backgrounds in social sciences, natural sciences and the humanities who have an interest in developing knowledge, understanding and skills of a quantitative nature.

Assessment will take the form of a personal project, based on the statistical analysis of a dataset of a student's choosing, that uses and illustrates the benefits of some of the testing and modelling techniques of this course.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Information for Visiting Students
Pre-requisitesNone
High Demand Course? Yes
Course Delivery Information
Academic year 2017/18, Available to all students (SV1) Quota:  39
Course Start Semester 2
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 200 ( Seminar/Tutorial Hours 30, Programme Level Learning and Teaching Hours 4, Directed Learning and Independent Learning Hours 166 )
Assessment (Further Info) Written Exam 0 %, Coursework 100 %, Practical Exam 0 %
Additional Information (Assessment) Assessment will take the form of a personal project, based on the statistical analysis of a dataset that uses and illustrates the benefits of some of the testing and modelling techniques of this course.
Feedback Early feedback will be provided by mid-semester on the research design aspects of the final project, prior to a full analysis being carried out. Additional support will be provided in relation to being able to carry out meaningful analysis on a realistic set of research questions.
No Exam Information
Learning Outcomes
On completion of this course, the student will be able to:
  1. Understand how to design research to investigate causal and explanatory relationships with quantitative data
  2. Understand the implications of various levels of data measurement and their related probability distributions
  3. Demonstrate ability to understand and to solve problems of an inferential nature based on symmetric and asymmetric relationships
  4. Gain proficiency in the use of statistical software to analyse multivariate data
  5. Interpret and communicate quantitative solutions in their applied context
Reading List
Core texts:
Field A (2009). Discovering statistics using SPSS (3rd edn). Sage, London. (HUB short loan/Reserve HA32 Fie)

Hair JF, Black WC, Babin BJ and Anderson RE (2014). Multivariate data analysis, (7th edn). Prentice-Hall, London. [Previous editions are fine.] (HUB short loan QA278 Hai)

Argyrous G (2011). Statistics for research: with a guide to SPSS (3rd edn). Sage, London. (2nd edition (2005) currently available: HUB short loan/Reserve HA29 Arg)

Tabachnick BG and Fidell LS (2007). Using multivariate statistics (5th edn). Pearson International Edition, Harlow. (HUB Reserve/Standard loan QA278 Tab)

Congdon P (2005). Bayesian models for categorical data.. Wiley, Chichester. (Murray Library/King¿s Buildings QA279.5 Con; e-book)
Additional Information
Graduate Attributes and Skills Not entered
Additional Class Delivery Information The course will be run as ten, three-hour, weekly seminars in a computer laboratory, including an introductory lecture and discussion, interspersed with practical exercises, using SPSS (and possibly other statistical software).
Keywordsstatistical inference testing modelling reduction dimensions
Contacts
Course organiserProf Andrew Thompson
Tel: (0131 6)51 1562
Email: Andrew.Thompson@ed.ac.uk
Course secretaryMs Nicole Develing-Bogdan
Tel: (0131 6)51 5067
Email: v1ndeve2@exseed.ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information