University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Physics and Astronomy : Undergraduate (School of Physics and Astronomy)

Undergraduate Course: Computational Astrophysics (PHYS11037)

Course Outline
SchoolSchool of Physics and Astronomy CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Year 4 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThis course provides an introduction to advanced computational techniques used for numerical simulations in astrophysics involving gravity and/or fluids. The topics include N-body methods for solving gravity problems and numerical hydrodynamics techniques for fluids.

Astrophysical topics for which the methods are used include cosmological simulations of structure formation in the Universe, the formation and evolution of galaxies, the formation and evolution of stars and planetary systems, and the collisions of neutron stars and black holes as a model for gamma-ray bursters. For more information on these and other topics to which the methods are applied, please see:

Although the examples are drawn from astrophysics, the methods taught are applicable to a wide range of problems in computational physics. The course is continuously assessed on the basis of workshop exercises: there is no Degree Examination.

N.B. This is a course on numerical algorithms and their practical use, not a course that teaches programming techniques or languages. Students must already be competent programmers.
Course description The course teaches students:

- how to formulate the equations relevant for hydrodynamics in conservative and non-conservative form.

- how to discretise the equations relevant for hydrodynamics in conservative form.

- how to numerically implement as computer code a subset of the equations relevant for hydrodynamics.

- knowledge of concepts of source terms, Eulerian and Lagrangian formulations, implicit and explicit formulations, finite difference approximations, finite difference/volume/element methods.

- the Smoothed Particle Hydrodynamics (SPH) implementation of the hydrodynamics equations.

- an understanding of the situations in which a Lagrangian treatment (as used by SPH) may be more appropriate than a Eulerian treatment.

- the Particle-Mesh method of solving the Poisson equation. This includes the ability to express the equations for gravitational dynamics in Fourier space, a sufficient awareness of a representative code to alter the initial conditions appropriately, understand the output, check the accuracy of the results, and manipulate and display them using standard tools.

- how to numerically implement as computer code a subset of the equations relevant for Particle-Mesh simulations.

- properties of the Discrete Fourier Transform.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Computer Modelling (PHYS09057) OR Numerical Recipes (PHYS10090)
Prohibited Combinations Other requirements At least 80 points accrued in courses of SCQF level 9 or 10 drawn from Schedule Q.
Information for Visiting Students
Pre-requisitesPractical programming experience.
High Demand Course? Yes
Course Delivery Information
Academic year 2017/18, Available to all students (SV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 18, Seminar/Tutorial Hours 3, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 77 )
Assessment (Further Info) Written Exam 0 %, Coursework 0 %, Practical Exam 100 %
Additional Information (Assessment) 3 items of practical assessment - 100%
Visiting Student Variant Assessment
3 items of practical assessment - 100%
Feedback Comments on practical assessment returned to students.
No Exam Information
Learning Outcomes
On completion of this course, the student will be able to:
  1. Describe and apply the finite-difference method for solving the equations of hydrodynamics
  2. Describe and apply the Smoothed Particle Hydrodynamics method for solving the equations of hydrodynamics
  3. Describe and apply the Particle-Mesh method of solving the Poisson equation
  4. Ability to apply standard astrophysical codes to practical situations
Reading List
Bodenheimer, P. et al. Numerical Methods in Astrophsics (2006; Taylor & Francis)
Notes as provided.
Additional Information
Course URL
Graduate Attributes and Skills Not entered
Additional Class Delivery Information Workshop/Tutorial Sessions as arranged.
Course organiserProf Avery Meiksin
Tel: (0131) 668 8355
Course secretaryMrs Catriona Mowatt
Tel: (0131 6)68 8403
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information