University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Chemical

Undergraduate Course: Chemical Engineering Unit Operations 3 (CHEE09009)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 9 (Year 3 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThe aim of this module is to deepen the students knowledge of the unit operations with a focus on distillation, absorption, adsorption and drying processes. This provides a foundation for the Chemical Engineering in Practice modules in the second semester of the 3rd year and for the Process Design modules in the 4th year.

This module draws on the concurrent course in Heat, Mass and Momentum Transfer, which gives the necessary foundations in mass transfer theory and also on the previous material in Chemical Engineering 2 Separation Processes, which should have imparted an understanding of the basic graphical methods in distillation of binary mixtures and other processes.

The present lectures will extend the simplified binary distillation processes of the previous module to the most general multicomponent case. We will explore efficient short cut methods and briefly introduce the principles behind accurate numerical solution procedures for multicomponent absorption, stripping and distillation processes; we will review rate-based mass transfer operations for packed columns in application to absorption and stripping and finally, we will consider basic design principles of adsorption, humidification and drying processes.

Course description L1 Introduction to Unit Operations; Equilibrium stage operations
L2 Thermodynamics of distillation
L3 Binary distillations review
L4 Binary distillations review
L5 Multicomponent Distillation: Short Cut Methods
L6 Multicomponent Distillation: Short Cut Methods
L7 Mass transport theories review
L8 Mass transport theories review
L9 Packed bed columns
L10 Packed bed columns
L11 Principles of humidification
L12 Methods of humidification
L13 Principles of drying
L14 Principles of drying
L15 Principles of adsorption
L16 Methods of adsorption
L17 Revision
L18 Revision

Tutorial 1: Bubble and dew points, flash separations, binary distillation
Tutorial 2: Properties and separation of multicomponent mixtures: dew and bubble point, multicomponent flash separation, Fenske-Underwood-Gilliland method
Tutorial 3: Mass transfer theory and absorption processes in packed towers
Tutorial 4: Design of cooling towers
Tutorial 5: Adsorption in stage-wise processes
Tutorial 6: Adsorption in fixed-bed process
Entry Requirements (not applicable to Visiting Students)
Pre-requisites It is RECOMMENDED that students have passed Process Calculations 2 (CHEE08014) AND Separation Processes 2 (CHEE08013)
Prohibited Combinations Other requirements None
Information for Visiting Students
High Demand Course? Yes
Course Delivery Information
Not being delivered
Learning Outcomes
By the end of the course students should be able:

- to apply the principles of mass, heat transfer and thermodynamics to analyze and synthesize chemical engineering processes

- to use short cut and graphical methods in design of multicomponent distillation, absorption, stripping and other processes

- to analyze critically advantages and disadvantages of various design options and parameters (stage vs. packed columns)
Reading List
1. Warren L. McCabe, Julian C. Smith and Peter Harriot, Unit Operations of Chemical Engineering, (Fifth Edition). McGrawHill, 1993.

2. Robert E. Treybal, Mass Transfer Operations (McGraw-Hill Classic Textbook Reissue Series).

3. J.D. Seader and Ernest J. Henley, Separation Process Principles, John Wiley & Sons, 1998.
Additional Information
Graduate Attributes and Skills Not entered
KeywordsNot entered
Course organiserDr Simone Dimartino
Tel: (0131 6)50 5598
Course secretaryMrs Lynn Hughieson
Tel: (0131 6)50 5687
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information