University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Civil

Undergraduate Course: Structural Design Philosophy 3 (CIVE09033)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 9 (Year 3 Undergraduate) AvailabilityNot available to visiting students
SCQF Credits10 ECTS Credits5
SummaryThis course explores structural functions and forms in addition to key concepts that underpin structural design, including the latest developments in structural engineering. It takes a step back from the structural mechanics methods taught elsewhere in the curriculum, such as Structural Mechanics 2 and Structural Analysis 3, and examines the design philosophy behind these techniques. For example, why and when is it safe to make assumptions and simplifications in design; how do different structural forms carry load; which structural form is best to meet a particular functional requirement? Modern trends in structural engineering involve using materials that are more brittle, or more prone to buckling, or lighter and thinner; what are the implications of these modern forms for structural design?

The course builds upon the analysis methods covered in 2nd year and 3rd year, and is intended for any student intending to specialise in structural engineering, or any student who wants to go beyond the equations or software that are used for general structural analysis and design.
Course description This 10 credit lecture course involves 18 hours of lectures and 4 hours of examples classes.The course topics (not necessarily in this order) include:

1.Introduction and conceptual framework

2.Limit-state design concepts for loading and strength.

3.Material versus structural behaviour: brittle behaviour, ductile behaviour, and instability. Plasticity theorems. Implications for structural analysis and design.

4.Structural form: axial force and bending dominated structures; curved line structures etc.; Understanding load paths in different structural forms.

5.Structural function and choice of structural form.

6.Modern developments in structural engineering, as examples of structural behaviour. For example, prestressed concrete; use of brittle FRP composites to reinforce or strengthen concrete; thin cold-formed steel sections from brittle high strength steel; post-tensioned thin concrete slabs; instability in offshore pipe structures.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: ( Structural Mechanics 2B (CIVE08010) AND Behaviour and Design of Structures 2 (CIVE08012)) AND
Prohibited Combinations Other requirements None
Course Delivery Information
Academic year 2018/19, Not available to visiting students (SS1) Quota:  None
Course Start Semester 2
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 18, Seminar/Tutorial Hours 9, Supervised Practical/Workshop/Studio Hours 4, Summative Assessment Hours 2, Revision Session Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 63 )
Assessment (Further Info) Written Exam 100 %, Coursework 0 %, Practical Exam 0 %
Additional Information (Assessment) Written Exam %: 100«br /»
Practical Exam %: 0«br /»
Coursework %: 0
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)2:00
Resit Exam Diet (August)2:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. Explain the fundamental structural theorems that allow a designer to make assumptions and simplifications during structural design, and recognise the significance of material ductility, structural ductility, brittleness, and instability for structural behaviour and design.
  2. Explain the basis of limit-state design, and the statistical basis underpinning design codes and safety factors.
  3. Describe different structural forms, establish the load paths within them, and use these to select an appropriate structural form to meet a functional requirement.
  4. Establish the critical factors that dominate the strength of a structural system and apply an appropriate simplified analysis method to determine its strength.
  5. Describe modern developments and trends in structural engineering, critically evaluate their performance, and choose an appropriate method to analyse their behaviour.
Reading List
M. Levy and M. Salvadori, ¿Why buildings fall down¿, WW Norton & Co.
D. Seward, ¿Understanding structures: analysis, materials, design¿, Palgrave Macmillan
M.S. Williams and J.D. Todd, ¿Structures, Theory and Analysis¿ MacMillan Press.
R.E. Melchers, ¿Structural Reliability and Analysis¿, Wiley.
P. Bhatt and H.M. Nelson, ¿Marshall and Nelson¿s Structures¿, Longman Scientific.
K.M. Leet and Chia-Ming Uiang, ¿Fundamentals of Structural Analysis¿, McGraw Hill.
Brohn D., ¿Understanding structural analysis¿, New Paradigm Solutions Ltd.
Additional Information
Graduate Attributes and Skills Not entered
KeywordsStructural Behaviour and Materials,Structural Form,Structural Function,Design Concepts
Course organiserDr Hwa Kian Chai
Course secretaryMr Craig Hovell
Tel: (0131 6)51 7080
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information