THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2018/2019

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Geosciences : Earth Science

Undergraduate Course: Earth Surface Processes (EASC10084)

Course Outline
SchoolSchool of Geosciences CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 10 (Year 4 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThe Earth's near surface environment, also known as the Critical Zone is defined as the Earth's outer layer from vegetation canopy to the soil and groundwater that sustains human life. As such, it forms the interface through which biology has the largest impact on geology, with potential for irreversible anthropogenic disturbance. A course is required that takes a holistic view of the natural geochemical processes in this zone and how these processes are modified by human/biological activities in order to develop the science base that underpins development of policies for dealing with contamination of this critical interface.
The objectives of the course are to:
1) understand the basic processes which influence the physical and chemical properties of the Earth's critical zone terrestrial environment;
2) explore the way in which these processes have interacted during the recent geological past to determine the character of shallow systems;
3) examine the way in which human behaviour has modified the Earth's critical zone and how geological understanding can help in remediating past damage and planning for future sustainable use.
4) develop critical appraisal of these interactions as a basis for improving regulatory framework.
Assessment will be in the form of an essay chosen from a set of topics designed to cover:
(a) critical appraisal/debate of evidence/concepts from literature;
(b) synthesis of ideas; and/or
(c) evidence-based assessment of policy issues/developments.
Course description The course will cover the following topics.

1. Water-rock Interaction and Material Cycling in the Earth's Critical Zone
Controls on mineral weathering rates. Field and laboratory methods for quantifying weathering, Field versus laboratory measurements, effects of temperature on mineral dissolution rates, organic-mineral and organic-metal interactions; mechanisms of mineral dissolution reactions. Discussion topic: What is the evidence for/against the leached layer hypothesis of mineral weathering?

2. Interpreting Rock Weathering at Catchment Scale
Factors controlling rock weathering in catchments, links to climate through glacial processes and mountain building; the Amazon Basin case study for interpreting catchment scale weathering rates. Geochemical tracers of weathering and soil formation, consequences for engineering properties of soils using the Hong Kong case study for geotechnical and landslide regulation.

3. Coupling Between Biology and Earth Materials in the Earth's Critical Zone
The geosphere-biosphere interface, role of biology in mineral growth and alteration. Mechanisms of biological weathering, Role of bacteria in acidic mine drainage, Effects on soil, groundwater and surface water sustainability.

4. Links Between Population Growth, Waste Generation and Disturbance of the Earth's Critical Zone
(i) Trends in population growth, resource exploitation and waste production, environmental degradation and sustainable development?
(a) Population growth and pressures linked to resource use and increased pollution.
(b) Exemplify a historical and scientific approach through the following examples: Thomas Malthus Essay on the principles of population, Club of Rome/Limits to growth, Limits to Growth 30(40) year update.
(ii) Environmental Management
Soils as a non-renewable resource in environmental management and stewardship. Sustainable use and sustainable development. What is sustainable? Bruntland Commission (1987). Legislation relating to soil management Soil management processes. Land Use Strategy for Scotland. Environmental Impact Assessments - offering enhancement over mitigation.
(iii) Waste Policy Framework, EU Legislation on What is Waste.
Waste Framework Directive. EU Landfill directive, Zero Waste Scotland, Solutions to waste generation. Controlling waste and methods of dealing with waste. Reducing waste as a method to offset potential global shortages.
(iv) Discussion/Debate Topic
(a) Is there a link between population growth and critical zone degradation? What is the future for humanity and the planet?
(b) Has the EU Landfill Directive been a success? At what level is this success measured.

5. Scientific Basis of the Contaminated Land Act 1990
Contamination and risk assessment (Source-pathway-target concept), Legal framework, contaminant transport and prediction, geological and experimental determination of transport parameters. Discussion/debate topics to include:
(i) what is the scientific basis of the Contaminated Land Act?
(ii) Are Soil Guideline values relevant?
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Information for Visiting Students
Pre-requisitesNone
High Demand Course? Yes
Course Delivery Information
Academic year 2018/19, Available to all students (SV1) Quota:  33
Course Start Semester 2
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 33, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 65 )
Assessment (Further Info) Written Exam 0 %, Coursework 100 %, Practical Exam 0 %
Additional Information (Assessment) Written Exam: 0%, Course Work: 100 %, Practical Exam: 0%.
You are assessed by an essay, chosen from a range of topics that we cover during the course. Topics are posted at least 3 weeks before the deadline and the essay has a word limit of 3,000 words.

The deadline is Friday 23rd March 2018 at 12.00 Noon. Essay to be submitted via Turnitin.
Feedback Essay topics from previous years will be made available to allow students to become familiar with the type of topics. We will encourage students to attempt these topics as a basis for receiving feedback during tutorial sessions.

No Exam Information
Learning Outcomes
On completion of this course, the student will be able to:
  1. Learning how to integrate information and data from various sources into a coherent framework that helps them design problem-based investigations.
  2. Visualising and applying this information to natural settings and at different scales in order to facilitate prediction.
  3. Gaining an appreciation of the link between theory and technology in order to develop a practical approach to problem solving.
  4. Appreciating the impact of human activities on the near-surface environment and learning how to develop strategies for sustainable use of the environment.
Reading List
Papers distributed to the class throughout the duration of the course.
Additional Information
Graduate Attributes and Skills Integration of science and policy issues.
KeywordsWeathering,Earth¿s critical zone processes,Regulatory framework,geosphere-biosphere interaction.
Contacts
Course organiserDr Bryne Ngwenya
Tel: (0131 6)50 8524
Email: Bryne.Ngwenya@ed.ac.uk
Course secretaryMs Ashley Stein
Tel: (0131 6)50 8510
Email: v1astei5@exseed.ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information