THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2018/2019

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Geosciences : Postgraduate Courses (School of GeoSciences)

Postgraduate Course: Principles and Practice of Remote Sensing (PGGE11233)

Course Outline
SchoolSchool of Geosciences CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Postgraduate) AvailabilityAvailable to all students
SCQF Credits20 ECTS Credits10
SummaryThis 20 points course aims to provide an introduction to the theory and practice of remote sensing. The aim is to equip students with the wide range of background knowledge and practical skills necessary to use remotely sensed observations with understanding. The courses therefore underpin more specialist remote sensing courses (available to Masters students in Semester 2) and support any RS- or IP-related project or dissertation work that students may pursue. Principles and Practice of Remote Sensing (PPRS) is an introductory course in the disciplines of Remote Sensing (RS) and Image Processing (IP). Introductory here does not mean easy, but that no prior knowledge of RS or IP is assumed. The courses teach both qualitative and quantitative skills in RS & IP, and a sound background in pre-University mathematics and physical science is assumed.
Course description Remote sensing is the use of remote observations, often space-based observations, to make inferences about the state of Earth's varied environments. Space-based observations usually consist of measurements of electromagnetic (EM) radiation made by specialist sensors at times and locations constrained by the mechanics of satellite orbits. A wide variety of wavelengths of EM radiation are used, with different wavelengths imprinted with different information about Earth, and subject to different capabilities and limitations. New sensors and techniques are constantly being developed.
To extract insight from remotely sensed data involves the techniques of retrieval (also known as: inversion, estimation) and image processing. In this course, students have the opportunity to use software to undertake simple retrieval and image processing, such as change detection, classification and some examples of digital filtering.
There are many applications of remote sensing in the domains of environmental science, policy and treaty verification, military applications, meteorology, oceanography, agriculture and ecology. In this course, an overview of applications and techniques is provided.
Any serious use of remotely sensed observations requires the user to be familiar with this wide range of knowledge, in order to select appropriate observations and use them with understanding.
This course will consist of 10 four hour combined lecture/tutorial/practical sessions. We will attempt to make us of online-based teaching (e.g. based on content on http://www.nln.geos.ed.ac.uk/). Each 1 hour lecture session will be followed by a 1 1/2 hour lecturer and demonstrator led tutorial and followed by 1 1/2 hour student led practical. The theory and information provided in the lectures will be reinforced by the tutorials and applied by the students in the practicals. The practicals will form components of the 1st assignment with formative feedback provided to students. The feedback can then be used to improve the components and these contribute to the final assessed assignment.
Content outline
Week 1
Introduction to Remote Sensing & basics of images
Aim: Show example applications of RS and teach practical skill in RS data handling
Week 2
Introduction to the Electromagnetic Spectrum, emission
Aim: Explain the underlying theory behind EM sources
Week 3
The Electromagnetic Spectrum reflection, transmission, absorption
Aim: Explain the underlying theory behind EM interaction with environment.
Week 4
Image processing techniques image enhancement
Aim: Introduce techniques to enhance RS data before extracting information.
Week 5
Image processing techniques change detection
Aim: Introduce techniques to extract changes within a series of RS data.
Week 6
Reading Week- Kindrogan Field Course
Week 7
Image processing techniques classification
Aim: Introduce techniques to classify surface features from RS data.
Week 8
Image processing techniques object-based image analysis
Week 9
Atmospheric Sounding
Week 10
Image processing techniques passive sensors
Week 11
Image processing techniques active sensors
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Information for Visiting Students
Pre-requisitesNone
High Demand Course? Yes
Course Delivery Information
Academic year 2018/19, Available to all students (SV1) Quota:  40
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 200 ( Lecture Hours 10, Seminar/Tutorial Hours 15, Supervised Practical/Workshop/Studio Hours 15, Summative Assessment Hours 100, Programme Level Learning and Teaching Hours 4, Directed Learning and Independent Learning Hours 56 )
Assessment (Further Info) Written Exam 60 %, Coursework 40 %, Practical Exam 0 %
Additional Information (Assessment) Coursework: 40%«br /»
Exam: 60%
Feedback The following are you opportunities to obtain feedback on your learning from us during this course:
- Questions and answers in lectures. Questions are encouraged during lectures, and give you an opportunity to check your understanding, and obtained more information in areas of interest to you.
- Assessed practical will be running from week 1 to week 11 and will be due in week 11. Feedback will be given on an ongoing basis during class. Any further questions may be directed to NG (e.g., after lectures).
- From individual written comments on assessed practicals and examinations scripts.
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)2:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. Demonstrate detailed, integrated knowledge of the application and history of remote sensing
  2. Discuss the nature of electromagnetic radiation and its interaction with the earth's surface and atmosphere
  3. Demonstrate a critical understanding of the differences between remote sensing systems and be aware of their characteristics and limitations
  4. Competently interpret, process and evaluate remotely sensed images and be able to use remote sensing to achieve self-defined goals
  5. Apply knowledge of image processing principles strategically to new problems
Reading List
Recommended Reading List:

- Lillesand, T. M. and Kiefer, R. W. (2004). Remote sensing and image interpretation. Fifth Edition. Wiley, 736pp.
- Campbell, J.B. (2002). Introduction to remote sensing. (3rd edition). Taylor and Francis (or Guildford), London. 622pp.
- Jensen, J.R. (2007). Remote sensing of the Environment: An earth resource perspective. Second Edition, Prentice-Hall, New Jersey. 544 pp.
- Rees, W. G., (2001) Physical principles of remote sensing 2nd ed, CUP.
- Robinson I S (2005) Measuring Oceans from Space, Praxis.
- Mather, P.M. (2004). Computer processing of remotely-sensed images: an introduction. Third Edition. Wiley and Sons, Chichester. 292pp.
- Jensen, J.R. (2005). Introductory digital image processing: A remote sensing approach. Third Edition. Prentice-Hall.
- Liu J G and Mason P J, Essential image processing and GIS for remote sensing, Wiley- Blackwell, 2009, isbn: 978-0-470-510131-5
- Asrar, G. (ed.) (1989). Theory and applications of optical remote sensing. John Wiley and Sons, New York. 734pp.
- Avery, T.E., Berlin, G.L. (1992). Fundamentals of remote sensing and airphoto interpretation (5th edition). Prentice Hall, Upper Saddle River, New Jersey.
- Barrett, E.C. and Curtis, L.F. (1992). Introduction to environmental remote sensing (3rd edition). Chapman and Hall, London. 426pp.
- Buiten, H.J., Clevers, J.G.P.W. (1993). Land observation by remote sensing: theory and applications. Gordon and Breach Science Publishers, Yverdon, Switzerland.
- Bukata, R.P., Jerome, J.H., and Podzniakov, O. (1995). Optical properties and remote sensing of inland and coastal waters. CRC Press, Boca Raton.
- Colwell, R.N. (1983) Manual of remote sensing, Vol. 1: Theory, instruments and techniques; Vol. 2: Interpretations and applications. CRC Press.
- Cracknell, A.P. (1996). The Advanced Very High Resolution Radiometer. Taylor and Francis, London.
- Cracknell, A.P., Hayes, L.W.B. Introduction to remote sensing. Taylor and Francis, London. 291pp.
- Curran, P.J. (1985). Principles of remote sensing. Longman.
Danson, F.M., Plummer, S.E. (eds.) Advances in environmental remote sensing. John Wiley, Chichester.
- Drury, S.A. (1998). Images of the Earth : Guide To Remote Sensing. IRL P.
- Drury, S.A. (1990). A guide to remote sensing: Interpreting images of the earth. Oxford Scientific Publications. 199pp.
- Drury, S.A. (1987). Image interpretation in geology. Allen and Unwin. London.
- Foody, G., Curran, P. (1994). Environmental remote sensing from regional to global scales. John Wiley, Chichester. 238 pp.
- Gibson, P. J. and Power, C. H. (2000) Introductory remote sensing principles and concepts. Routledge, London.
- Gibson, P. J. and Power, C. H. (2000) Introductory remote sensing: Digital image processing and applications. Routledge, London. 249 pp.
- Kramer, H.J. (1996). Observation of the earth and its environment: Survey of missions and sensors (3rd edition). Springer-Verlag, Berlin.
- Kondratyev, K.Ya., Buznikov, A.A., Podrovsky, O.M. (1996). Global change and remote sensing. Wiley-Praxis, Chichester. 370pp.
- Legg, C.A. (1994). Remote sensing and geographic information systems: Geological mapping, mineral exploration and mining. Wiley-Praxis, Chichester. 166pp.
- Lo, C.P. (1986). Applied remote sensing. Longman.
- Pazner, M., Thies, N., Chavez, R. (1994). Simple computer imaging and mapping. Think Space Inc.
- Rees, W.G. (2001). Physical principles of remote sensing. 2nd Edition. Cambridge University Press, 247pp.
- Rencz, A. (1999). Manual of remote sensing: Vol. 3 Remote sensing for the earth sciences. Wiley. 700 pp.
- Richards, J. A. (1993) Remote sensing digital image analysis : an introduction (2nd edition) Springer- Verlag, Berlin.
- Robinson, I.S. (1994). Satellite oceanography: An introduction for oceanographers and remote sensing scientists. Wiley-Praxis, Chichester. 455pp.
- Sabins, F.F. (1998). Remote sensing : principles and interpretation (3rd edition). Freeman, New York.
- Schowengerdt, R.A. (1997). Remote sensing: models and methods for image processing. Academic Press.
- Slater, P. (1980). Remote Sensing: optics and optical systems. Addison-Wesley, Reading, Massachusetts.
- Verbyla, D.L. (1995). Satellite remote sensing of natural resources. Boca Raton. London
- Victorov, S. (1996). Regional satellite oceanography. Taylor and Francis, London. 306pp.
Williams, J. (1995). Geographic information from space. Wiley-Praxis, Chichester. 210pp.

*International Journal of Remote Sensing (Some volumes [1984 - mostly present] in Drummond Library,
Complete set in James Clark Maxwell Library, King Buildings)
Photogrammetric Engineering and Remote Sensing (Main Library, George Square)
*Remote Sensing of Environment (Main Library, George Square)
*IEEE Transactions in Geosciences and Remote Sensing (Robertson Library and Heriot-Watt University)
*ISPRS Journal of Photogrammetry and Remote Sensing (Drummond Library)
Additional Information
Graduate Attributes and Skills - Allow students to engage with a range of theoretical ideas and practical techniques in remote sensing
- Have an understanding of some of the recent forefront developments
- Enable students to interpret a variety of source material and be able to make professional-standard judgements where data are limited or comes from a range of sources;
- Provide training in critical analysis and in written presentation so students are able to critically identify and analyse complex problems to a professional standard
KeywordsRemote Sensing
Contacts
Course organiserDr Noel Gourmelen
Tel: (0131 6)50 2662
Email: Noel.Gourmelen@ed.ac.uk
Course secretaryMrs Karolina Galera
Tel: (0131 6)50 2572
Email: k.galera@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information