THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2019/2020

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Biological Sciences : Biology

Undergraduate Course: Genes and Gene Action 2 (BILG08003)

Course Outline
SchoolSchool of Biological Sciences CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 8 (Year 2 Undergraduate) AvailabilityAvailable to all students
SCQF Credits20 ECTS Credits10
SummaryRecombination and genetic mapping. Molecular genetics of prokaryotic and eukaryotic cells. DNA replication and protein synthesis and the regulation of gene expression. The manipulation of DNA. Genetics of Development. Cell cycle control and cancer.
Course description Genetics underlies all aspects of biology and our understanding of how genes are inherited and how they affect an organism¿s phenotype has increased rapidly during the past twenty years. Genes and Gene Action 2 provides an introduction to modern genetics and molecular genetics. It includes lectures covering recombination and gene mapping, bacterial conjugation, plasmids and transposons, DNA replication, the genetic code, expression of genetic information in prokaryotes and eukaryotes, gene cloning and its application to human genetics, genetic control of development, and the genetic basis of and cancer. Material delivered in the lectures is complemented and reinforced by the experiments carried out in practicals and the problems tackled in tutorials.

Performance is assessed by a problem done during weeks 3-5 (5%), weekly lecture quizzes that will test your knowledge of the lecture material as the course progresses (10%), an online data handling test (20%) based on problem solving and data analysis skills acquired during the lectures, practicals and tutorials, setting, answering and commenting on questions using the collaborative learning tool PeerWise (5%), and a final exam (60%).

Genes and Gene Action 2 is either a required or recommend course for most Honours programmes in Biological Sciences. Prior attendance at The Dynamic Cell 2 is recommended.

Entry Requirements (not applicable to Visiting Students)
Pre-requisites It is RECOMMENDED that students have passed Molecules, Genes and Cells 1 (BILG08015) AND ( The Dynamic Cell 2 (BILG08009) OR Evolution in Action 2 (BILG08005))
Co-requisites
Prohibited Combinations Other requirements None
Information for Visiting Students
Pre-requisitesEquivalent of the courses listed above
High Demand Course? Yes
Course Delivery Information
Academic year 2019/20, Available to all students (SV1) Quota:  None
Course Start Semester 2
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 200 ( Lecture Hours 33, Seminar/Tutorial Hours 8, Supervised Practical/Workshop/Studio Hours 15, Online Activities 2, Feedback/Feedforward Hours 1, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 4, Directed Learning and Independent Learning Hours 135 )
Assessment (Further Info) Written Exam 60 %, Coursework 20 %, Practical Exam 20 %
Additional Information (Assessment) In-course problem. In-course assessment = 40%, examination = 60%.
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)2:00
Resit Exam Diet (August)2:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. Br able to explain how genetics is used to analyse a variety of biological phenomena
  2. Be able to explain molecular processes that control gene expression and cell division.
  3. Be able to describe basic genetic manipulation and cloning techniques, and how these have been applied to analyse particular genetic diseases
  4. Be able to explain how genes function to control cell division and cell fate in developing multicellular organisms.
  5. Be able to analyse genetic data and to carry out genetic experiments
Reading List
The primary text for the course is:
¿An Introduction to Genetic Analysis¿ 11th ed, by Griffiths, Wessler, Carroll and Doebley covers most of the material in this course. It will be useful for 3rd and 4th year courses in genetics. ¿Modern Genetics Analysis¿ by the same authors is a less comprehensive version.

The following texts are also recommended for some aspects of the course:
¿Molecular Biology of the Gene¿ 7th ed. by Watson et al. is an excellent source for the more molecular aspects of the course.

¿Human Molecular Genetics¿ 4th ed. by Strachan and Read is an excellent source of information on human genetics.
Additional Information
Graduate Attributes and Skills Research and Enquiry

Personal and Intellectual Autonomy

Communication

Personal Effectiveness
Additional Class Delivery Information Laboratory W 1000-1300 or 1400-1700, alternate weeks
Tutorial W 1000-1200, W 1400-1700 or Th 1400-1600, alternate weeks
KeywordsGGA2,Gene structure and manipulation,genetic maps,genes and development cell cycle and cancer
Contacts
Course organiserProf David Finnegan
Tel: (0131 6)50 5377/5526
Email: David.Finnegan@ed.ac.uk
Course secretaryMrs Carolyn Wilson
Tel: (0131 6)50 8651
Email: Carolyn.Wilson@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information