Undergraduate Course: Stochastic Modelling (MATH10007)
Course Outline
School | School of Mathematics |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 10 (Year 3 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | This is an advanced probability course dealing with discrete and continuous time Markov chains. The course covers the fundamental theory, and provides many examples. Markov chains has countless applications in many fields raging from finance, operation research and optimization to biology, chemistry and physics. |
Course description |
Markov Chains in discrete time: classification of states, first passage and recurrence times, absorption problems, stationary and limiting distributions.
Markov Processes in continuous time: Poisson processes, birth-death processes.
The Q matrix, forward and backward differential equations, imbedded Markov Chain, stationary distribution.
Syllabus summary: Probability review: Conditional probability, basic definition of stochastic processes. Discrete-time Markov chains: Modelling of real life systems as Markov chains, transient behaviour, limiting behaviour and classification of states, first passage and recurrence times, absorption problems, ergodic theorems, Markov chains with costs and rewards, reversibility. Poisson processes: Exponential distribution, counting processes, alternative definitions of Poisson processes, splitting, superposition and uniform order statistics properties, non-homogeneous Poisson processes. Continuous-time Markov chains: transient behaviour, limiting behaviour and classification of states in continuous time, ergodicity, basic queueing models.
|
Information for Visiting Students
Pre-requisites | Visiting students are advised to check that they have studied the material covered in the syllabus of each prerequisite course before enrolling. |
High Demand Course? |
Yes |
Course Delivery Information
|
Academic year 2019/20, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 2 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 22,
Seminar/Tutorial Hours 5,
Summative Assessment Hours 2,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
69 )
|
Assessment (Further Info) |
Written Exam
95 %,
Coursework
5 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
Coursework 5%, Examination 95% |
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | Stochastic Modelling (MATH10007) | 2:00 | |
Learning Outcomes
On completion of this course, the student will be able to:
- Understand stochastic processes and their characterization.
- Analyze the transient behaviour of Markov chains, and classify their states.
- Understand stationary and limiting behaviour and derive these probability distributions.
- Calculate the finite dimensional distributions of Poisson processes.
- Appreciate the range of applications, together with a facility to model appropriate problems in terms of a stochastic process.
|
Reading List
http://www.readinglists.co.uk |
Contacts
Course organiser | Dr Tibor Antal
Tel: (0131 6)51 7672
Email: Tibor.Antal@ed.ac.uk |
Course secretary | Miss Sarah McDonald
Tel: (0131 6)50 5043
Email: sarah.a.mcdonald@ed.ac.uk |
|
|