Undergraduate Course: Multi-scale Methods in Mathematical Modelling (MATH11141)
Course Outline
School | School of Mathematics |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 11 (Year 5 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | The aim of this course is to introduce a unified framework for the systematic simplification of a variety of problems that all share the common feature of possessing multiple scales in their description. Multiscale systems are ubiquitous across various scientific areas, including chemical and biological processes or material science, and are characterised by nontrivial interactions between a wide range of spatial and temporal scales. The high complexity of multi-scale systems implies that accurate description of the underlying problem is either impossible or practically intractable and, instead, a coarse-grained approach must be used. The set of techniques discussed in this course - commonly referred to as averaging and homogenisation - is applicable to problems characterised by separation of scales and described by either ODEs, PDEs or SDEs.
The driving principle behind this approach is to derive systematic approximations of the original highly heterogeneous system so that the simplified description, which effectively 'averages out' the
microscopic features, provides an accurate description of the system properties at the 'macro' scales of interest. The main advantage of this approach is that the resulting equations are much more amenable to rigorous analysis and numerical implementation. We will also discuss conditions which are necessary for the solution to the full equations to converge to the averaged/homogenised description in the limit of the scale of the small-scale inhomogeneities tending to zero. |
Course description |
Motivating examples
Basics of ODEs and probability
Multiple-scale perturbation expansions; singular perturbations
Slow and fast dynamics in ODEs; Dimension reduction in ODEs; The Fredholm Alternative Invariant manifolds and 'slow' manifolds in ODEs; chaos & shadowing lemmas
Averaging and Homogenisation for ODEs (Hamiltonian & dissipative systems)
Convergence Theorems
|
Information for Visiting Students
Pre-requisites | Visiting students are advised to check that they have studied the material covered in the syllabus of any pre-requisite course listed above before enrolling |
High Demand Course? |
Yes |
Course Delivery Information
|
Academic year 2019/20, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 1 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 22,
Seminar/Tutorial Hours 5,
Summative Assessment Hours 2,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
69 )
|
Assessment (Further Info) |
Written Exam
95 %,
Coursework
5 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
Coursework 5%, Examination 95% |
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S1 (December) | | 2:00 | |
Learning Outcomes
On completion of this course, the student will be able to:
- Apply the method of multiple scales to ODEs.
- Identify and apply suitable transformations to various problems encountered in practice to the general framework considered in the course.
- Explain and apply the key aspects of the solvability conditions via the Fredholm alternative and the need for considering them in the context of averaging and homogenisation.
- Explain the concept of invariant manifolds and 'slow' manifolds in the systems of ODEs, and determine these.
- Apply homogenisation and averaging techniques to simple, low-dimensional ODEs.
|
Reading List
Recommended:
G. A. Pavliotis and A. M. Stuart. Multiscale Methods: Averaging and Homogenization, Springer, 2008. (Main course text)
D. Cioranescu and P. Donato. An Introduction to Homogenization. Oxford University Press, New York, 1999.
M. H. Holmes, Introduction to Perturbation Methods, Springer, 2012. |
Additional Information
Graduate Attributes and Skills |
Not entered |
Keywords | MSM |
Contacts
Course organiser | Dr Benjamin Goddard
Tel: (0131 6)50 5127
Email: B.Goddard@ed.ac.uk |
Course secretary | Mr Martin Delaney
Tel: (0131 6)50 6427
Email: Martin.Delaney@ed.ac.uk |
|
|