Undergraduate Course: Thermal Physics (PHYS09061)
Course Outline
School | School of Physics and Astronomy |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 9 (Year 3 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 20 |
ECTS Credits | 10 |
Summary | This two-semester course covers thermal physics, the first semester contains an introduction to equilibrium thermodynamics. The First and Second laws of thermodynamics are introduced, along with the concepts of temperature, internal energy, heat, entropy and the thermodynamic potentials. Applications of thermodynamic concepts to topics such as heat engines, the expansion of gases and changes of phase are considered. The Third Law, and associated properties of entropy, complete this section.
The second semester provides an introduction to the microscopic formulation of thermal physics, generally known as statistical mechanics. We explore the general principles, from which emerge an understanding of the microscopic significance of entropy and temperature. We develop the machinery needed to form a practical tool linking microscopic models of many-particle systems with measurable quantities. We consider a range of applications to simple models of crystalline solids, classical gases, quantum gases and blackbody radiation.
|
Course description |
Thermodynamics (semester 1):
- Thermal equilibrium; equations of state and thermodynamic stability; PV diagrams; temperature scales.
- First law: heat and work; reversible and irreversible processes; heat capacities.
- Thermodynamic processes: reversible expansions (isothermal, adiabatic); irreversible expansions (Joule, Joule-Kelvin); illustration with ideal and van der Waals gases.
- Second law: entropy from a thermodynamic perspective (Clausius, Kelvin-Planck definitions).
- Cyclic processes: Carnot cycle, maximum efficiency.
- Thermodynamic potentials; Legendre transformations; Maxwell relations; applications to various thermodynamic processes.
- Introduction to Black Body radiation (treated more fully in Statistical Mechanics).
- Thermodynamic approach to phase transitions; van der Waals as example; continuous and discontinous transitions; critical point.
- Third law.
- Chemical potential and open systems.
- Superconductivity and superfluidity as concepts.
Statistical Mechanics (semester 2):
- Statistical description of many-body systems; formulation as a probability distribution over microstates; central limit theorem and macrostates.
- Statistical mechanical formulation of entropy.
- Minimisation of the free energy to find equilibrium.
- Derivation of the Boltzmann distribution from principle of equal a priori probabilities in extended system.
- Determination of free energy and macroscopic quantities from partition function; applications to simple systems (paramagnet, ideal gas, etc).
- Multi-particle systems: distinguishable and indistinguishable particles in a classical treatment; Entropy of mixing and the Gibbs paradox.
- Fermi-Dirac distribution; application to thermal properties of electrons in metals.
- Bose-Einstein distribution; application to the properties of black body radiation; Bose-Einstein condensation.
- Introduction to phase transitions and spontaneous ordering from a statistical mechanical viewpoint: illustration of complexity arising from interactions; simple-minded mean-field treatment of an interacting system (e.g., van der Waals gas, Ising model).
|
Information for Visiting Students
Pre-requisites | None |
High Demand Course? |
Yes |
Course Delivery Information
|
Academic year 2019/20, Available to all students (SV1)
|
Quota: None |
Course Start |
Full Year |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
200
(
Lecture Hours 44,
Seminar/Tutorial Hours 44,
Formative Assessment Hours 3,
Revision Session Hours 1,
Programme Level Learning and Teaching Hours 4,
Directed Learning and Independent Learning Hours
104 )
|
Assessment (Further Info) |
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
Coursework 20%
Examination 80% |
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | | 3:00 | |
Learning Outcomes
On completion of this course, the student will be able to:
- Show fluency and confidence in thermodynamics and statistical mechanics, and apply them to various physical systems
- Present a solution to a physics problem in a clear and logical written form
- Assess whether a solution to a given problem is physically reasonable
- Locate and use additional sources of information (to include discussion with peers where appropriate) to facilitate independent problem-solving
- Take responsibility for learning by attending lectures and workshops, and completing coursework
|
Reading List
Finn, Thermal Physics |
Additional Information
Course URL |
www.ph.ed.ac.uk/~gja/thermo/ |
Graduate Attributes and Skills |
Not entered |
Additional Class Delivery Information |
2 lectures per week
1 tutorial (2 hours) |
Keywords | ThPh |
Contacts
Course organiser | Prof Graeme Ackland
Tel: (0131 6)50 5299
Email: gjackland@ed.ac.uk |
Course secretary | Miss Denise Fernandes Do Couto
Tel: (0131 6)51 7521
Email: Denise.Couto@ed.ac.uk |
|
|