THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2020/2021

Information in the Degree Programme Tables may still be subject to change in response to Covid-19

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Civil

Undergraduate Course: Geotechnical Engineering 2 (CIVE08025)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 8 (Year 2 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThis course introduces soil mechanics and engineering geology for geotechnical engineering applications such as foundations, rail construction and tunnels. It considers the fundamental mechanics of soils as a heterogeneous mixture of air, water and solid particles and the origin of these materials from their parent rocks. It analyses the deformation of natural and man-made structures that comprise or are built upon soil, and the flow of fluids within them. It develops an understanding of how the fundamental principles of geological sciences influence the design and construction of engineering structures.

The course covers the fundamental multi-phase nature of soils and their origins, soil and rock description and classification, the effective stress concept, elementary seepage and compaction problems, and the standard soil testing techniques for analysing and determining soil properties.
Course description LECTURES
Introduction
Aims and challenges of geotechnical engineering; Introduction to Engineering Geology, Rock Mechanics and Soil Mechanics
Engineering Geology:
Structural Geology; Geohazards & Earthquakes; Difficult Grounds; Ground Investigation
Soil and rock types:
Nature and formation of soils/rocks; Description and Classification of soils/rocks; Rock-quality designation
Multi-phase nature of soils:
Mass-volume relationships; Soil phase diagram; Theory of compaction; Laboratory compaction tests
Stresses in soils:
Pore-water pressure; Effective stresses; Geostatic stress condition; Horizontal and vertical stresses; Normal consolidation and overconsolidation; Stresses in two dimensions; Mohr's diagram method of stress analysis
Permeability of soils:
Flow of water through soil; Darcy's law; Laboratory measurement of permeability; Field measurement of permeability; One-dimensional seepage; Two-dimensional seepage; Flow net construction and uses in the solution of geotechnical seepage problems.
Revision

TUTORIALS
Tutorials give the students ample opportunities to develop skills in applying the theories and methods learned to solve elementary geotechnical engineering problems. The exercises cover a great variety of elementary geotechnical problems in varying degrees of difficulty:
Engineering Geology
Mass-volume relationship, soil/rock classification, and compaction
Total and effective stresses, Mohr's circle
Permeability and Seepage

LABORATORIES
Laboratory classes aim to train the student in proper laboratory test techniques, including the analysis of results and the evaluation of relevant properties.
Laboratory 1 - Determination of plastic and liquid limits:
The experiments to determine the plastic limit and liquid limit of a clay soil are performed in accordance to BS1377:1990. The results lead to the determination of the plasticity index and the use of the plasticity chart.
Laboratory 2 - Compaction, maximum dry density:
The experiment to determine the relationship between dry density and water content is performed in accordance to Test 12 of BS1377:1990. The optimum water content which gives the maximum dry density for a certain compactive effort is determined.
Laboratory 3 - Determination of coefficient of permeability:
The coefficient of permeability of a sand is determined by using a constant head permeameter.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Additional Costs PPE
Information for Visiting Students
Pre-requisitesNone
High Demand Course? Yes
Course Delivery Information
Academic year 2020/21, Available to all students (SV1) Quota:  None
Course Start Semester 2
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 22, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 76 )
Assessment (Further Info) Written Exam 70 %, Coursework 30 %, Practical Exam 0 %
Additional Information (Assessment) Written Exam: 70%
Coursework: 30%
Feedback Feedback on each coursework submission
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)2:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. Explain the multiphase nature of soils, derive quantities relating to the volumes and masses of the different phases of a soil, and measure soil compaction;
  2. Demonstrate a basic knowledge of sedimentary, igneous and metamorphic rocks; recognise and describe common geological formations of relevance to civil engineering and demonstrate a basic knowledge of investigation techniques and mitigation strategies for difficult ground conditions;
  3. Apply the effective stress concept and Mohr-circle stress analysis to solve elementary geotechnical problems;
  4. Demonstrate understanding of soil permeability and solve seepage-related problems.
Reading List
J.A. Knappett and R.F. Craig, Craig's Soil Mechanics, Spon Press, 2012.
Waltham, A.C. Foundations of Engineering Geology. 3rd Edition, Blackie Academic and Professional, 2009

Background reading:
G.E. Barnes, Soil Mechanics: Principles and Practice, Macmillan, 2010.
W. Powrie, Soil Mechanics: Concepts and Applications, CRC Press, 2013.
Additional Information
Graduate Attributes and Skills Not entered
KeywordsSoil mechanics,Engineering geology,multi-phase,soi description and classification,stresses,Mohr's
Contacts
Course organiserDr Jin Sun
Tel: (0131 6)51 9028
Email: J.Sun@ed.ac.uk
Course secretaryMr Craig Hovell
Tel: (0131 6)51 7080
Email: c.hovell@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information