Information in the Degree Programme Tables may still be subject to change in response to Covid-19

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : Business School : Common Courses (Management School)

Postgraduate Course: Advanced Simulation Techniques (CMSE11420)

Course Outline
SchoolBusiness School CollegeCollege of Arts, Humanities and Social Sciences
Credit level (Normal year taken)SCQF Level 11 (Postgraduate) AvailabilityNot available to visiting students
SCQF Credits10 ECTS Credits5
SummaryIn this advanced course on simulation, students will learn additional techniques related to both aspects of modelling and analysis of a simulation problem. Knowledge and understanding of all materials covered in the introductory course Simulation Modelling and Analysis (which runs in the first half of Semester 2) is strictly required.

The Advanced Simulation Techniques course is designed to complete the simulation modelling and analysis skill set of our students for them to be even better placed to run simulation projects of an industrial scale and, as such, will involve the use of additional commercial software products for simulation that are not covered by the introductory course.
Course description Academic Description

In this advanced course on simulation, students will learn additional techniques related to both aspects of modelling and analysis of a simulation problem.

From the modelling perspective, students will learn various graphical formalisms for building conceptual models for subsequent implementation in a simulation software. They will also learn simulation methods beyond Discrete Event Simulation, including Agent-Based Simulation, System Dynamics, Hybrid Simulation, etc.

Additional techniques for experimenting with a simulation model will also be presented to students, including (Factorial) Design of Experiments, the Response Surface Methodology, and techniques that integrate/hybridise the use of both simulation and optimisation techniques/heuristics.

During computer labs, students will learn and use commercial simulation packages that are not used in the introductory course Simulation Modelling and Analysis. This will help them to familiarise with additional simulation products they may encounter in their Business Analytics profession when applying simulation.

Outline Content

- Conceptual Modelling for Simulation
- Agent-Based Simulation
- System Dynamics
- Hybrid Simulation
- Statistical Design and Analysis of Experiments
- Full-Factorial Design of Experiments
- Response Surface Methodology
- Optimum-Seeking Packages for Simulation
- Simulation-Optimisation

Student Learning Experience

Weekly lectures and hands-on programming exercises in the chosen commercial software for simulation (e.g.: Anylogic, Simio), which enables students to implement the methodologies covered in class.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites Students MUST also take: Simulation Modelling and Analysis (CMSE11426)
Prohibited Combinations Other requirements For MSc Business Analytics students, or by permission of course organiser. Please contact the course secretary.
Course Delivery Information
Not being delivered
Learning Outcomes
On completion of this course, the student will be able to:
  1. Discuss the concepts and methods of simulation analytics, in general, and discrete event simulation, in particular, using the proper terminology;
  2. Identify and properly state decision problems in different business settings, model them using a simulation framework, verify and validate the model, choose the right solution methodology and methods and solve them using simulation techniques;
  3. Interpret results/solutions in light of the possible courses of action for a given business problem or situation, formulate managerial guidelines and make recommendations;
  4. Critically discuss alternative simulation methods for a given problem, and choose the most appropriate ones ahead of implementation.
Reading List
Law, A.M. (2014) Simulation Modeling and Analysis (5th edition), McGraw-Hill
Additional Information
Graduate Attributes and Skills Problem Solving
Knowledge integration and application
Analytical, critical and creative thinking
Numeracy and Big Data
Written communication
KeywordsNot entered
Course organiserDr Maurizio Tomasella
Course secretaryMiss Lauren Millson
Tel: (0131 6)51 3013
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information