THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2020/2021

Information in the Degree Programme Tables may still be subject to change in response to Covid-19

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Geosciences : Geosciences

Postgraduate Course: Energy & Society I; Key Themes and Issues (GESC11010)

Course Outline
SchoolSchool of Geosciences CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Postgraduate) AvailabilityNot available to visiting students
SCQF Credits20 ECTS Credits10
SummaryThe struggle for life is the struggle for available energy this quote attributed to the physicist and philosopher Ludwig Boltzmann highlights how important energy is in our lives. Indeed, all our other material resources could be provided for (and indeed recycled) if we had a limitless supply of cheap energy. Alas, the dream of civilian use of nuclear fusion remains 50 years away whilst our current energy system has proved to be rather expensive once we started to observe and learned to account for all the social and environmental externalities it creates.
Most iconic inventions in human history are directly related to the increase of energy services, e.g. the control of fire, the invention of the wheel, the telecoms and digital data revolutions. Our innate understanding of the importance of energy is evidenced not only though our dreams and creativity but even through our spirituality. Take for example the first page of the book of Genesis: Gods first act of creation was to switch the light on before eventually creating the consumers of this energy service. It is a vision of creation which features the ultimate engineer, taking a supply-side approach to our energy needs (and by inference, designing humans to use the daylight that was pre-provided).

Many of the energy challenges we face in the 21st century are more to do with demand side understanding the complexity of human desires, values and behaviour in relation to energy use. It would be a gross simplification to see these challenges, summarised in the energy trilemma (clean, affordable & secure energy), as mainly technical problems; they are more to do with the social and political issues associated with changing our energy system. In other words, the operating space of human engineers is determined by social, economic and political processes.

Yet most existing post graduate courses on energy are of a technical nature. This particular course was set up in recognition of the pedagogic imperative for students to explore the numbers behind politicized discussions on our energy future (e.g. the cost of new nuclear, the intermittency of renewables, the scope for improved energy efficiency). Moreover the course seeks to help students improve their numerical energy literacy, to encourage students to look at society through the energy lens and unpack our overdependence on scarce and contested resources, the social impacts of energy provision and the lock-in and externalising effects of energy provision under incumbent (and unsustainable) energy regimes and associated technologies. The course cuts across scales from the domestic to the national and international, seeking to draw lessons from historical energy transitions and from comparative analysis in different national, geographical, political and socio-economic contexts.
Course description The course explores what the social sciences can bring to our understanding of energy systems; how and why they have evolved the way they have and what societal processes and social conditions are critical to the adoption and good use of cleaner technologies and sources of energy in the decades ahead. By looking at society 'through the energy lens', students will also learn to appreciate the cultural relevance of energy related things and practices, and appreciate the inherent power relations and distributional aspects of changing energy systems.
Bringing social theory to bear on concrete examples of energy systems, the course is broadly structured into four parts; spatio-temporal processes, energy and the environment, energy and the city, energy in homes and communities.

Lectures are every Wednesday 9-11am. The weekly topics are:
1. Introduction
2. Energy literacy
3. Energy-society frontier (Orkney)
4. Energy & community
5. Technology and risk
6. Energy & climate justice
7. Urban energy & climate governance
8. Assignment 2 presentations & discussion
9. Energy scenarios, narratives, evaluation.
10. The energy-food-water nexus.
11. You choose!

Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Course Delivery Information
Academic year 2020/21, Not available to visiting students (SS1) Quota:  45
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 200 ( Lecture Hours 22, Seminar/Tutorial Hours 11, Supervised Practical/Workshop/Studio Hours 4, Programme Level Learning and Teaching Hours 4, Directed Learning and Independent Learning Hours 159 )
Assessment (Further Info) Written Exam 0 %, Coursework 100 %, Practical Exam 0 %
Additional Information (Assessment) Group assignment (35%)
Personal reflection on group assignment (15%)
Essay (50%)

Assessment deadlines
Group assignment: week commencing the 4th of Nov
Essay: week commencing the 9th of Dec
Feedback Not entered
No Exam Information
Learning Outcomes
On completion of this course, the student will be able to:
  1. Identify and assess the role of access to energy in historical processes of societal change.
  2. Examine the socio-technical nature of technology adoption, and the political nature of energy policy choices in the context of energy systems change.
  3. Demonstrate a critical understanding of systemic, institutional and individual challenges to more energy efficient lifestyles.
  4. Deploy skills in measuring, monitoring and evaluating energy use, for the purpose of assessing more energy efficient interventions.
Reading List
Chevalier J-M. 2009. The New Energy Crisis: Climate, Economics and Geopolitics. Macmillan, Basingstoke.
Elliott D. 2009. Energy, Society and Environment: Technology for a Sustainable Future. Macmillan, Basingstoke.
Fay J.A. and Golomb D. 2002. Energy and the Environment. Oxford University Press, Oxford.
Goldemberg J. 1996. Energy, Environment and Development. Earthscan, London.
Helm D. (ed.) 2007. The New Energy Paradigm. Oxford University Press, Oxford.
Fanchi R.J., Tjan Kwang Wei (eds.) 2005. Energy in the 21st Century. World Scientific, Hackensack, N.J.
Illich I. 1974. Energy and Equity. Calder & Boyars, London
Hughes T.P. 1993 Networks of Power: Electrification in Western Society, 1880¿1930. Johns Hopkins University Press, Baltimore
Lovins A.B. 1977. Soft Energy Paths: Toward a Durable Peace. Penguin, London.
Mallon K. (ed.) 2007. Renewable Energy Policy and Politics: A Handbook for Decision-Making. Earthscan, London.
McElroy M. 2010. Energy: Perspectives, Problems, and Prospects. Oxford University Press, Oxford.
Mitchell, K. 2009. The Political Economy of Sustainable Energy. Macmillan, Basingstoke.
Muller I. 2007. A History of Thermodynamics: The Doctrine of Energy and Entropy. Springer, Berlin.
Niele F. 2005. Energy: Engine of Evolution. Elsevier, London.
Nye D.E. 1998. Consuming Power: A Social History of American Energies. MIT Press, Cambridge, Mass.
Pasqualetti M.J., Gipe P. and Righter R.W. (eds.) 2002. Wind Power in View: Energy Landscapes in a Crowded World. Academic Press, San Diego.
Smil V. 1994. Energy in World History. Westview Press, Boulder.
Smil V. 2003. Energy at the Crossroads: Global Perspectives and Uncertainties. MIT Press, Cambridge.
Sudhakara R., Assenza G., Assenza D. and Hasselmann F. 2010. Energy Efficiency and Climate Change: Conserving Power for a Sustainable Future. Sage, London.
Twidell J. and Weir T. 2006: Renewable Energy Resources. Taylor & Francis, London.
Wagner H.J. (2008) Energy: The World¿s Race for Resources in the 21st Century. Haus Publishing Limited, London.
Additional Information
Graduate Attributes and Skills Not entered
KeywordsEnergy systems,Social theory,Technology adoption,Societal change,Innovation
Contacts
Course organiserDr Dan Van Der Horst
Tel: (0131 6)51 4467
Email: Dan.vanderHorst@ed.ac.uk
Course secretaryMs Kathryn Will
Tel: (0131 6)50 2624
Email: Kath.Will@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information